Responses

other Versions

PDF

Root-cause analysis: swatting at mosquitoes versus draining the swamp
Compose Response

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Statement of Competing Interests

PLEASE NOTE:

  • Responses are moderated before posting and publication is at the absolute discretion of BMJ, however they are not peer-reviewed
  • Once published, you will not have the right to remove or edit your response. Removal or editing of responses is at BMJ's absolute discretion
  • If patients could recognise themselves, or anyone else could recognise a patient from your description, please obtain the patient's written consent to publication and send them to the editorial office before submitting your response [Patient consent forms]
  • By submitting this response you are agreeing to our full [Response terms and requirements]

Vertical Tabs

Other responses

Jump to comment:

  • Published on:
    SPC and Complexity
    • Anthony P Morton, retired medical practitioner/medical statistician Princess Alexandra Hospital Brisbane

    As you point out Root Cause Analysis will often fail with hospital adverse event (AE) data because it was not designed to deal with data arising in a complex system.1 The same can be said for Pareto analysis. Statistical process control (SPC) methods are often used to summarise AE data, particularly hospital infection data such as surgical site infections (SSIs) and bacteraemias.2 Standard SPC also frequently fails to summarise these complex data correctly.
    With binary SSI data an approximate expected rate is frequently available so cumulative observed minus expected and CUSUM analysis are appropriate.2 However, the changing observed rate is not seen unless the numbers of procedures is large enough for them to be grouped by months or quarters. This is often infrequent. Even when such aggregation is possible difficulties arise as the number of procedures in each month may differ markedly. This problem can be dealt with, at least approximately, by employing a generalised additive model (GAM) analysis to the binary data that predicts the observed AE rate at various places in the time series.
    Count and rate data such as bacteraemias or new isolates of an antibiotic-resistant organism will usually not have an expected rate available. These data are often grouped by months and a Shewhat chart used for their display. This chart requires a stable centre-line about which reliable control limits can be drawn. Often the mean value is used as the expected rate even though...

    Show More
    Conflict of Interest:
    None declared.