Automated detection of harm in healthcare with information technology: a systematic review Malavika Govindan, ¹ Aricca D Van Citters, ² Eugene C Nelson, ¹ Jane Kelly-Cummings, ³ Gautham Suresh ⁴ ► An additional appendix is published online only. To view these files please visit the journal online (http://qshc.bmj.com). ¹The Dartmouth Institute for Health Policy and Clinical Practice, Center for Leadership and Improvement, Dartmouth Medical School, Lebanon, New Hampshire, USA ²Department of Community and Family Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA ³Society for Hospital Medicine, Philadelphia, Pennsylvania, USA ⁴Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA ### Correspondence to Dr Gautham Suresh, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA: gautham.suresh@hitchcock.org Accepted 14 July 2009 Published Online First 29 July 2010 # **ABSTRACT** **Context** To improve patient safety, healthcare facilities are focussing on reducing patient harm. Automated harm-detection methods using information technology show promise for efficiently measuring harm. However, there have been few systematic reviews of their effectiveness. **Objective** To perform a systematic literature review to identify, describe and evaluate effectiveness of automated inpatient harm-detection methods. **Methods** Data sources included MEDLINE and CINAHL databases indexed through August 2008, extended by bibliographic review and search of citing articles. The authors included articles reporting effectiveness of automated inpatient harm-detection methods, as compared with other detection methods. Two independent reviewers used a standardised abstraction sheet to extract data about automated and comparison harm-detection methods, patient samples and events identified. Differences were resolved by discussion. **Results** From 176 articles, 43 articles met inclusion criteria: 39 describing field-defined methods, two using natural language processing and two using both methods. Twenty-one studies used automated methods to detect adverse drug events, 10 detected general adverse events, eight detected nosocomial infections, and four detected other specific adverse events. Compared with gold standard chart review, sensitivity and specificity of automated harm-detection methods ranged from 0.10 to 0.94 and 0.23 to 0.98, respectively. Studies used heterogeneous methods that often were flawed **Conclusion** Automated methods of harm detection are feasible and some can potentially detect patient harm efficiently. However, effectiveness varied widely, and most studies had methodological weaknesses. More work is needed to develop and assess these tools before they can yield accurate estimates of harm that can be reliably interpreted and compared. # INTRODUCTION It is widely recognised that harm caused by the healthcare system is a major source of morbidity and mortality in hospitalised patients. An estimated 15 million instances of medical harm occur in the USA every year. However, the lack of simple, practical and accurate methods to identify adverse events in hospitals has hampered efforts to develop routine monitoring systems, assess the impact of interventions to prevent harm and compare interhospital performance. Detecting incidence and types of patient harm are prerequisites for implementing strategies to prevent harm. Manual, comprehensive chart review by trained professionals has been used in key studies and can be considered the gold-standard harm-detection method. $^{3-6}$ However, this approach requires time and trained abstractors, thereby decreasing its feasibility as a pragmatic method for routine measurement of adverse events. Several organisations are currently using the Institute for Healthcare Improvement's Global Trigger Tool, which is based on manual chart review, and allows targeted chart review to identify harm more efficiently than comprehensive chart review and more extensively than voluntary reporting of harm. Automated strategies of harm detection that use computerised methods to scan patient records may require fewer time and personnel resources than traditional methods, and can potentially provide real-time surveillance alerts. We performed this review to: (1) identify types of automated methods of inpatient harm detection described in published literature, (2) describe types of events identified by these methods and (3) evaluate accuracy of these methods in identifying harm. We also independently evaluated the quality and validity of key studies. # METHODS Definitions In this review, we used the terms harm, automated harm detection and gold standard chart review as defined in Box 1. # Data sources/study selection We (MG and AVC) identified articles for this review through a literature search of MEDLINE (start date 1950) and CINAHL (start date 1982) using the following search terms: (harm OR adverse event OR adverse drug event OR nosocomial infection) AND (automated OR computerised OR electronic) AND (identify OR detect OR detection OR recognise OR recognition). We identified additional articles using bibliographic review of key articles, the 'related articles' feature of Medline, and the 'find similar' and 'find citing articles' feature of CINAHL. We reviewed the title and abstract of each article, and obtained the full text of relevant articles. We limited our search to English language articles indexed through 31 August 2008. We included studies that: (a) occurred in an inpatient setting, (b) described an automated harm-detection method, (c) measured actual harm and (d) compared the automated method to an alternative method of harm detection. ### **Box 1 Definitions** ### Harm Poor patient outcome resulting from medical care rather than the natural history of the disease, whether or not it was preventable. This term includes adverse medical events (ie, falls, nosocomial infections), adverse drug events and adverse surgical events (ie, postoperative infections, surgical complications). It excludes medical errors that did not result in injury to patients. ### **Automated harm-detection method** A method of rapidly searching a large number of patient medical records with a computerised tool to identify actual harm, or indicators (associations) of harm. Records and events identified through computerised screening may then be subjected to further scrutiny by electronic or manual means to verify harm. We defined two degrees of automation: (1) fully automated methods, in which identification of harm was not followed by further chart review, and (2) partially automated methods, in which identified patient records were manually reviewed to verify harm. ### Gold standard chart review Manual review of the medical record initially by trained personnel, with subsequent review by either a physician or clinical pharmacist to confirm the presence or absence of harm and characteristics of such harm. ### **Data extraction and analysis** We developed and tested a standardised data form and extracted the following variables from included articles: details of patient sample, methodology used for automated harm detection, nature of events identified, description of alternative method of harm detection and comparisons of events detected by automated and alternative methods. Data were extracted by MG and AVC, with uncertainties resolved by discussion and consensus. We critically appraised each study that compared the automated method of harm detection to a gold standard chart review using published criteria for validity of diagnostic test studies. We assessed each study for: (a) independent, blind comparison of the automated method with a gold standard method, (b) performance of the gold standard assessment regardless of the automated method's results and (c) validation of the assessment in a second, independent set of patients. If studies provided adequate data, we independently calculated the sensitivity, specificity and positive and negative predictive values of the automated harm-detection method. # RESULTS ### Selection of articles One hundred and seventy-six articles were reviewed for potential inclusion, of which 43 provided information on validity of automated methods of harm detection. $^{8-50}$ The remaining articles were excluded because they: were review articles on harm-detection methodologies $(n=9)^{51-59}$; did not focus on detection of harm (n=26) or automated methods (n=22); did not include a comparison group (n=17); were not limited to inpatients (n=13); were descriptive papers of a program, incident reporting system, algorithm or computer simulation (n=33); were commentaries or editorials (n=11); or were repeat publications (n=2). The methodologies and results from the 43 included studies are described in online appendix 1. Of these, 14 studies compared the automated harm-detection methodology to a gold standard chart review, and their methods and results are summarised in tables 1. 2. As shown in online appendix 1, 20 studies were conducted among adult populations, three in paediatric patients, two among all age groups, one in geriatric patients, one among Medicare beneficiaries and one among patients 14 years and older. The most common hospital settings were general medical units (n=14), followed by general surgical units (n=8), medical, surgical or general intensive care units (n=8), medical subspecialties (n=3), neonatal and paediatric intensive care units (n=3) and obstetric units (n=2). The target population and setting were unstated in 15 studies. ### Data sources for automated harm-detection methods Automated harm-detection methods were classified into field-defined and natural language-processing systems. Field-defined systems relied on computerised detection using pre-existing numeric or coded data stored in medical records. Natural language processing relied on computerised analysis of free text within a
medical record to detect language indicative of harm. Field-defined and natural language-processing systems are described in table 3. Forty-one of 43 studies used field-defined systems for automated harm detection. The nature of the programs, databases used, data fields used and types of harm detected within this category were source-specific. Typical sources of data for field-defined programs included laboratory, radiology, microbiology, pharmacy, and administrative and billing databases. Five of 43 studies used natural language-processing systems. The most common source of data was discharge summaries. Radiology reports, chart text, daily progress notes, consultation notes, nursing records, and procedure or operative reports also were # **Degree of automation** Twenty-five studies (58%) reported on detection tools that were partially automated, $^{8-14}$ $^{21-25}$ 31 32 $^{34-38}$ 40 $^{45-48}$ 50 14 studies (33%) described fully automated tools, $^{15-17}$ 19 $^{26-30}$ 33 41 42 44 49 and one study (2%) reported both fully and partially automated systems. 20 The degree of automation was unclear in three reports (7%). 18 39 43 # Types of events identified Automated methods for detecting harm predominantly focused on identification of adverse drug events (ADEs) (n=21, 49%). 11 12 18 $^{21-26}$ $^{29-32}$ $^{35-38}$ 43 45 50 Ten automated methods (23%) focused on general adverse events, $^{8-10}$ 19 33 34 40 $^{46-48}$ eight (19%) focused on nosocomial infection, 14 20 28 39 41 42 44 49 and four (9%) focused on other specific adverse events (eg, decubitus ulcers, surgical complications). 13 15 17 27 # Accuracy of automated harm-detection methods Only 14 studies¹⁵ ¹⁷ ¹⁸ ²⁰ ²² ²³ ²⁶ ³⁰ ³²–³⁴ ⁴⁴ ⁴⁷ ⁴⁸ compared an automated harm-detection method with 'gold-standard' adverse event detection and were eligible for critical appraisal of validity (table 2). Methodologies used to evaluate these automated systems were heterogeneous. Seven studies (50%) applied the gold standard using independent, blind evaluators. Eight studies (57%) applied the gold standard independently of the outcome from the automated method. One study (7%) validated the results of the automated method in an independent, second set of patients. Table 4 shows the sensitivity, specificity, and positive and negative predictive values of the automated methods that were Summary of studies comparing automated harm-detection methods with gold standard chart review Table 1 | | 50.000 | | and with gold ordinadia | | | | |--|--|---|---|--|---|---| | Reference | Patient sample
and time frame | Sampling
strategy* | Specialty | Events identified | Automated event dataset sample size | Comparison event dataset
sample size | | Field-defined | | 5 | | | - | - | | Nebeker <i>et al¹⁸</i> | Adults
2001 and 2003 | Random | Unknown | Adverse drug events | 3987 admissions | 3987 admissions | | Zhan <i>et al</i> ¹⁷ | Medicare benefic.
2002 to 2004 | Random | General Surgery | Adverse event: specifically postoperative deep venous thrombosis and/or pulmonary embolism | 20 868 hospital discharges
identified as surgical patients | 20 868 hospital discharges
identified as surgical patients | | Brossette <i>et al</i> ⁴⁴ | Unknown
1—3 Dec 2003 and
26—29 Apr 2004 | Sequential | Unknown | Infection | 907 admissions | 907 admissions | | Hougland <i>et al</i> ³⁰ | Adults
1 Jan 2001 to
31 Dec 2001 | Random, Flagged sample
(from records with at least one
flagged adverse drug event code) | Unknown | Adverse drug events | 3103 inpatients:
1961 random,
1142 flagged | Unknown | | Polancich <i>et al</i> ¹⁵ | Unknown | Unknown | Unknown | Hospital acquired decubitus ulcers | Unknown | 123 charts from patients with PSI-
identified decubitus ulcers | | Dormann <i>et al²⁶</i> | Adults
1 Sept 2000 to
28 Feb 2001 | Sequential | Gastroenterology | Adverse drug events | 474 admissions of 377 patients;
109 ADEs | 474 admissions of 377 patients; 109 adverse drug events | | Trick <i>et al</i> ²⁰ | Adults
1 Sept 2001 to
28 Feb 2002 | Sequential | Unknown | Infection | 135 positive blood cultures | 144 positive blood cultures | | Levy <i>et al²³</i> | All age groups
1 Apr 1997 to
31 May 1997 | Sequential | General Medical | Adverse drug events | 199 admissions (192 patients) | 199 admissions | | Azaz-Livshits <i>et al</i> ²² | All age groups
1 Apr 1995 to
31 May 1995 | Sequential | General Medical | Adverse drug events | 153 admissions | 153 admissions | | Jha <i>et aj³²</i>
NI P | Adults
1 Oct 1994 to
31 May 1995 | Sequential | MICU, SICU,
General Medical,
General Surgical | Adverse drug events | 21 964 patient-days | 21 964 patient-days | | Penz <i>et al</i> ⁴⁷ | Adults
1 Jun 1999 to
31 Dec 2004 | Sequential | MICU, SICU and other (placement of CVC) | Adverse events related to
central venous catheter
placement | 316 patient records | 40 patients records (10 very low probability† records, 30 high probability) | | Forster <i>et al³⁴</i> | Adults
FY 2002 | Random | General Medical,
General Surgical | Adverse event | 245 patients | 245 patients | | Melton and Hripcsak ⁴⁸ | Unknown
1996—2000 | Random (charts),
Sequential (electronic discharge
summaries) | Unknown | Adverse events: specifically
45 NYPORTS event types | 1000 charts, 57 422 electronic
discharge summaries | 1000 charts | | Murff <i>et af</i> ³³ | Adults
1 Jan 2000 to
30 Jun 2000 | Random (Cohort 1), Sequential
(Cohort 2) | General Medical,
Medicine subspecialties | Adverse drug events, adverse events, diagnostic errors, operative complications, falls | Cohort 1: 424 admissions.
Cohort 2: 2826 admissions | Cohort 1: 295
Cohort 2: 145 Complex sampling/
subsampling and manual review process | *Sampling strategy refers to the method by which charts were chosen to be screened by the automated tool. Unless specifically noted, the same sampling strategy also applies to the gold standard method. †A scoring system was developed by the authors to reflect the probability of the adverse event in question relating to the central venous catheter placement. This system is described in the text and in table 1 of the paper. CVC, central venous catheter, MICU, Medical Intensive Care Unit; NYPORTS, New York Patient Occurrence Reporting and Tracking System; PSI, patient safety indicators; SICU, Surgical Intensive Care Unit. Table 2 Evaluation of validity of studies comparing automated method to gold standard chart review | Reference | Strategy of
event identification | Degree of
automation* | Automated method
source of data | Comparison
method
source of
data | Gold
standard
applied by
independent,
blind | Gold
standard
applied
regardless
of
automated | Study method
applied to
independent
patient
set? | Comments | |---|---|---|--|--|---|--|--|---| | Field-defined
Nebeker <i>et al</i> ¹⁸ | Computer algorithms | Chart review for
study, unclear if
strategy aims to
be Full or Partial | ICD-9 CM codes | Medical record Yes | Yes | Yes | ON. | Study used Hougland et ai ³⁰ methodology to specifically apply HOCTA (hierarchically optimal classification tree analysis) to administrative data to develop surveillance rules for the identification of ADEs manifesting as either bleeding or definium. Requires expert computer programming. | | Zhan <i>et al¹⁷</i> | Patient Safety Indicators | ling. | ICD-9 CM codes | Medical record Unknown | Unknown | Unknown | ON. | DVT/PE events flagged by ICD-9 CM codes were compared with those discovered by gold standard chart review. The sample studied was a random sample abstracted by the Medicare Patient Safety Monitoring System. | | Brossette <i>et af</i> ⁴⁴ | Nosocomial
Infection Marker | Full | Medical record and
Lab database | Medical record Yes | Yes | Yes | No | Nosocomial Infection Marker (NIM) program by Med Mined, Birmingham, Alabama. Took about 10 min/week to maintain. Total time for NIIM: 2 h/10 000 admissions, compared with medical record review at 1.5 full time employees per 10 000 admissions. | | Hougland <i>et al³⁰</i> | Automated
ICD-9 code
strategy | Full: Review of
flagged charts
here for study
purposes | ICD-9 CM codes | Medical record Yes | Yes | Yes | No
V | Expert panel identified 416 ICD-9 CM codes to represent ADEs (flagged ADEs). Then chart review performed to ascertain codes' ability to detect/identify ADE. | | Polancich <i>et al</i> ¹⁵ | Patient Safety Indicators | Full | Administrative data,
Billing data, ICD-9 CM
diagnosis and
procedure codes | Medical Record No | ON
ON
 O
O | No | Designed to test validity of Agency for Healthcare Research and Quality (AHRQ) PSIs for detecting hospital acquired decubitus ulcers. Only a sample of cases was manually reviewed. | | Dormann <i>et al</i> ²⁶ | Automated
laboratory
signal detection | Full | Demographics,
History, Lab
findings, Drugs,
& Diagnosis | Medical record Unknown | Unknown | Unknown | No | Used automated lab signals (ALS) and changes in ALS to identify ADEs. Automated system used to flag potential ADEs, which were then sent as an alert to physicians. Use of delta ALS (change) resulted in improvement over Dormann <i>et al</i> 's ²⁵ methodology. | | Trick <i>et al</i> ²⁰ | Computer algorithm | Full and Partial | Medical record; Lab,
pharmacy, & radiology
database; Microbiology | Medical record; Yes
Lab,
pharmacy, &
radiology
database;
Microbiology | Yes | Yes | ON. | Comparison of manual and computer assisted bloodstream central venous catheter infection surveillance using data from two hospitals. Different computer algorithms developed for full or partial automation were tested. | | Levy <i>et al²³</i> | Automated
laboratory
signal detection | Partial | Lab database | Lab database
and clinical
data | Unknown | Yes | No
V | Implementation of the pilot program described in Azaz-
Livshits et al. ²² Computerised lab data monitored to detect
ADEs using the same signals as the pilot study. | | Azaz-Livshits
et al ²² | Automated
Iaboratory
signal detection | Partial | Lab database | Lab database
and clinical
data | Unknown | Yes | No | Pilot program to develop and assess computerised laboratory data as a detection tool for ADE in 34-bed medical ward in Jerusalem, Israel. Lab signals generated by computer, then verified by team. Limited computerised patient data at this hospital; however lab data were fully electronic. Cost of this system reasonable compared with costs of ADEs. | | | | | | | | | | poliaitao | Table 2 Continued | Reference | Strategy of
event identification | Degree of
automation* | Automated method
source of data | Comparison
method
source of
data | Gold
standard
applied by
independent,
blind
reviewer? | Gold
standard
applied
regardless
of
automated | Study method
applied to
independent
patient
set? | Comments | |---------------------------------------|---|---|--|--|--|--|--|--| | Jha <i>et aj³²</i>
NI P | Automated triggers | Partial | Medical record | Medical record Yes | Yes | Unknown | ON. | Study of computer-based ADE identification using modified Classen 1991 ⁸ rules to create automated triggers with which the electronic record was screened. Rules modified during the study to increase PPV, and new rules created. Trained reviewer and physician were blinded to detection method. 11 person-hours per week for automated method versus 55 for chart review and 5 for voluntary reporting. | | Penz et al ⁴⁷ | Computer algorithms & Natural
Language
Processing | Partial | Text records: Daily Text records: progress notes; Daily progress Consultation, Nursing, notes; and Procedure notes; Consultation, Operative reports; Discharge summaries Procedure notes; Operative reports; Discharge summaries summaries | Text records: Daily progress notes; Consultation, Nursing, and es Procedure notes Operative reports; Discharge summaries | δ.
 | °N | ON. | Compared two methods for semiautomated review of text records within the VA database using NLP (MedLEE) and a phrase matching algorithm (PMA). Limited by incomplete or inaccurate documentation, incomplete coding, spelling errors, and sentence structure abbreviations. Time/technology intensive. | | Forster <i>et al</i> ³⁴ | Computerised
screen for
trigger words
in free text | Partial | Discharge summaries | Discharge
summaries | Yes | Yes | ON. | Automated adverse event lexicon made up of 104 terms used by Murff et al. ³³ Computerised search engine scanned discharge summaries (disearch desktop) to detect potential harm. Specificity higher for non-elective admissions and discharge summaries dictated by residents/staff versus medical students. Automated detection reduced physician time by one-fifth. | | Melton and
Hripcsak ⁴⁸ | Natural Language
Processing | Partial | Discharge summaries | Full electronic chart; combined electronic chart and paper chart for a subset of 100 patients | 0
 | ON. | <u>0</u> | Natural Language Processing system (MedLEE) to identify 45 NY Patient Occurrence Reporting and Tracking System event types. Chart review by physician and independent informatician of random sample of 1000 charts to assess performance of NLP program. Results biased towards patients with electronic discharge summaries. This method is technologically intensive. | | Murff <i>et a)</i> ³³ | Computerised screen for trigger words in free text | Full (goal is a fully
automated system,
manual review of
subsamples
performed
for study) | Discharge summaries | Medical record Yes
(not otherwise
specified) | Yes | Yes† | Yes | Brigham and Women's Hospital, using Brigham Integrated Computer system. Computerised screening tool searched free text dischage summaries for trigger words indicating possible adverse events. List of automated trigger words compiled using Havard Medical Practice Study definitions as base. Electronic method alone versus electronic plus manual review compared for two cohorts. Reviewers blinded to whether screening tool had identified the admission. | ADE, adverse drug event; AE, adverse event; DVT, deep venous thrombosis; NLP, natural language processing: PE, pulmonary embolism; PPV, positive predictive value; PSI, patient safety indicators; VA, Veterans Administration. *We define fully automated methods as those where the identification of harm was not followed by further chart review, and partially automated methods where patient records flagged by the automated detection of potential harm (eg, 'trigger') were manually reviewed to verify harm. †Authors manually reviewed a random 25% sample of screened-negative charts, then used this random sample to estimate the number of adverse events occurring in entire set of screened-negative charts. Qual Saf Health Care: first published as 10.1136/qshc.2009.033027 on 29 July 2010. Downloaded from http://qualitysafety.bmj.com/ on April 10, 2024 by guest. Protected by copyright. | Table 3 Description and classification of field-defined and natural language processing systems for automated detection of harm* | and natural language processing systems for automate | detection of harm* | | |--|---|---|--| | Automated method | Data source used | Events identified | Comments | | Complications Screening Program (CSP) $^{8-10.46}$ | ICD-9 CM codes | Adverse drug events, adverse surgical outcomes, infections, and miscellaneous complications such as falls | A computerised method for identifying potentially preventable complications of hospital care. | | Health Evaluation through Logical Processing $(\mathrm{HELP})^{11-14}$ | Electronic Medical Record: specifically including pharmacy, laboratory, radiology and surgery records | Adverse drug events, adverse medical device events, infection | Integrated electronic medical record of the LDS Hospital in Salt Lake City, Utah, which contains an interactive modular knowledge base that continually analyses information | | Patient Safety Indicators (PSI) ^{15–17} ⁴⁶ | Administrative data: billing information, ICD-9 CM diagnosis codes and procedure codes | Adverse events | A fully automated method developed by
the Agency for Healthcare Research and
Quality | | Computer algorithms ^{18–21} | Electronic Medical Record: components specific to the particular program: see online appendix 1 | Adverse events, adverse drug events, infection | Specific, named computer programs | | Lab signal detection tools $^{22-26}$ | Laboratory Database | Adverse drug events | Automated tools search for key words or word combinations that signal potential or actual harm—for
example, detection of elevated potassium levels. | | ICD-9 CM or billing code detection tools $^{27-30}$ | Administrative data: ICD-9 CM or billing codes | Adverse drug events, infections, surgical complications | Automated tools scan for diagnosis, discharge, or billing codes that signal potential or actual ham—for example, evidence of antibiotic exposure following a postoperative infection | | Tools using computerised triggers ^{31–45 50} | Electronic Medical Record: multiple sources such as pharmacy, laboratory, and microbiology databases | Adverse events, adverse drug events infection | Automated tools using multiple triggers to signal actual or potential harm—for example, detection of elevated potassium levels (laboratory database) combined with certain medication administration (pharmacy database). Among the various tools included in this category, there are four named systems: Dynamic Pharmaco-Monitoring System, Nosocomial Infection Marker, Event Detector, New York Antimicrobial Resistance Project. | | Natural language processing systems ^{33 34 47–49} | Free text in the Electronic Medical
Record: discharge summaries, radiology
reports, chart notes | Adverse events, infection | Sophisticated programs that 'read' free text via the application of computer logic | ^{*}Multiple detection strategies were used in several studies, including those that combined two or more field-defined systems, 4 two natural language-processing systems, 47 and both a field-defined and natural language-processing system 33 34 | lentification* | |----------------| | .≌ | | for event | | _ | | thods | | 4 | | m | | 굣 | | automated | | of | | <u>خ</u> | | ä | | ≒ | | 3 | | 2 | | 4 | | 4 | | æ | | á | | | | Table 4 Accurac | Accuracy of automated methods for event identification* | entification* | | | | |--------------------------------------|--|---|---|---|--| | | Events identified by | | | Positive predictive | Negative predictive | | Reference | automated harm-detection method | Sensitivity (95% CI) | Specificity (95% CI) | value (95% CI) | value (95% CI) | | Field-defined | | | | | | | Nebeker <i>et al</i> ¹⁸ | Calculated separately for bleeding/
anticoagulation ADEs and delirium ADEs | Bleeding: 0.86†
Delirium: 0.94† | Bleeding: 0.89†
Delirium: 0.71† | Bleeding: 0.12†
Delirium: 0.03† | NA | | Zhan <i>et a/</i> ¹⁷ | DVT Cases | 0.67 (0.58 to 0.76) | NA+ | 0.31 (0.25 to 0.37) | NA+ | | | PE cases | 0.74 (0.59 to 0.90) | NA+ | 0.24 (0.16 to 0.33) | NA+ | | | DVT/PE Cases | 0.68 (0.60 to 0.76) | NA+ | 0.29 (0.24 to 0.34) | NA+ | | Brossette et a/ ⁴⁴ | Hospital-wide nosocomial infection | 0.88†¶ | NA+¶ | 0.78 | NA | | Hougland <i>et al</i> ³⁰ | Codes for inpatient ADE | 0.10 (0.63 to 0.14) | 0.97 (0.96 to 0.98) | 0.32 (0.22 to 0.43) | 0.89 (0.88 to 0.91) | | Polancich et a/15 | Patients with decubitus ulcers | NA+ | NA† | 0.50 (0.42 to 0.59) | NA+ | | Dormann <i>et al²⁶</i> | ADR positive admissions using NEW ALS | 0.91 | 0.23 | 0.18‡ | 0.93 | | | ADR positive admissions using DELTA ALS | 0.41 | 0.76 | 0.25‡ | 0.87 | | Trick <i>et al</i> ²⁰ | Hospital-acquired episodes of primary
CVC associated bloodstream infections | 0.81† | 0.72† | 0.62† | 0.87† | | Levy <i>et al</i> ²³ | Admissions | 0.63 (0.51 to 0.74) | 0.42 (0.34 to 0.51) | 0.34 (0.25 to 0.42) | 0.70 (0.60 to 0.80) | | Azaz-Livshits et a/22 | Admissions | 0.66 (0.51 to 0.81) | 0.51 (0.42 to 0.60) | 0.31 (0.21 to 0.41) | 0.82 (0.73 to 0.91) | | Jha <i>et al³²</i>
NLP | ADE | NA† | NA† | 0.16§ (0.16 to 0.19) | NA† | | Penz <i>et af⁴⁷</i> | Cases | PMA: 0.70 †
NLP: 0.50 † Combination: 0.72† | PMA: 0.55 †
NLP: 0.91 † Combination: 0.80† | PMA: 0.41†
NLP: 0.71† Combination: 0.64† | PMA: 0.8†
NLP: 0.8†
Combination: 0.85† | | Forster <i>et al</i> ³⁴ | Patients | 0.23 (0.11 to 0.35) | 0.92 (0.88 to 0.96) | 0.41 (0.22 to 0.59) | 0.83 (0.78 to 0.88) | | Murff et al ³³ | Gases
AE | o.co (c.10 to 0.30)
Fully automated: 0.69 (0.62 to 0.75)
Partially automated: 0.64 (0.56 to 0.70) | Euly automated 0.48 (0.42 to 0.55) Partially automated: 0.85 (0.80 to 0.90) | C.+7, (U.30 to 0.54)
Fully automated: 0.52 (0.46–0.58)
Partially automated: 0.78 (0.72–0.85)
(cohort 1), 0.84 † (cohort 2) | Cost 10:50 to 0:51
Fully automated: 0.65 (0.58–0.72)
Partially automated: 0.74 (0.69–0.79) | *95% Cls for independently verified values reported in parentheses. +Denotes figures that we could not independently verify. ### Denotes figures that we could not independently verify. ##### Denotes figures that we can be a set of the properties propertie Suita et ai³² report a range of PPVs based on the first and final 8 weeks of data collection (0.16 and 0.23, respectively). We were able to independently verify the PPV for the first 8 weeks of the study only. ¶Brossette et ai⁴⁴ reported a sensitivity of 0.86 and a specificity of 0.98. It is unclear how they identified true negative screens. ADE, adverse drug event; AE, adverse event; CVC, central venous catheter; DVT, deep venous thrombosis; NLP, natural language processing; PE, pulmonary embolism; PMA, phrase matching algorithm. # Original research compared against a gold standard chart review. Sensitivities of different methods ranged from 0.10 to 0.94, and specificities ranged from 0.23 to 0.98. Positive predictive values ranged from 0.03 to 0.84, and negative predictive values ranged from 0.70 to 0.96. Our independent assessment of validity allowed us to verify all published values for nine of the 14 studies that reported validity data. $^{15\ 17\ 22\ 23\ 30\ 33\ 34\ 48}$ Figure 1 displays the sensitivity and 1-specificity intersection points of methods used in these studies in a format similar to that of a receiver-operating characteristic curve. ### DISCUSSION Strategies to improve patient safety require efficient and accurate detection of patient harm. Automated methods of harm detection have been used for this purpose because they offer the potential to rapidly scan patient records with minimal human effort. This systematic review describes types of automated methods of harm detection used in inpatient settings, events identified by these methods and their accuracy. We found two categories of automated harm detection described in the literature: field-defined systems (used in most studies) and natural language-processing systems. Most frequently laboratory, pharmacy and administrative databases were used to identify adverse drug events, general adverse events and nosocomial infections. We found that the validity of studies describing automated harm-detection methods was variable. Of these studies, those attempting to identify ADEs ^{18 30} and nosocomial infections^{20 44} using field-defined methods, and one attempting to identify multiple types of adverse events³³ using natural language processing satisfied more validity criteria than others. We believe that automated harm-detection methods will have more validity if they attempt to identify events that are discrete, easily and reliably detected, and consistently documented in the chart, such as adverse drug events, nosocomial infections, pressure ulcers and postoperative complications. Automated harm detection has the potential to positively impact clinical practice. While most automated methods retrospectively identified harm, eight were paired with real-time surveillance alerts that informed physicians or pharmacists of an adverse event. Such prospective surveillance systems can alert the clinical team of impending or ongoing harm, thus allowing early intervention to limit harm. Real-time alerts were present within methods for detecting adverse drug events, ¹¹ ²¹ ²³ ²⁶ ³⁵ ⁴⁵ general adverse events ⁴⁰ and nosocomial infection. ¹⁴ Automated alerts were a component of the Health Evaluation through Logical Processing system ¹¹ ¹⁴ and were incorporated within methods using automated lab signal detection, ²³ ²⁶ ⁴⁵ computer algorithms ²¹ and other automated triggers. ³⁵ ⁴⁰ Another potential benefit of automated detection is the reduction of person-hours required for harm surveillance. Few studies¹⁴ ²¹ ²² ³² ³⁴ ³⁸ ⁴⁰ ⁴⁴ provided information on financial or human
resource requirements for implementing and maintaining automated detection tools. In general, the automated methods reviewed here require fewer person-hours than manual **Figure 1** Sensitivity by 1-specificity for automated methods compared with gold standard methods of harm detection. ^a Only the aggregated values for the harm detection method from each paper are shown. Individual components of an automated method are not shown. ^b Triangles represent sensitivity and specificity values that could be independently verified. chart review. Field-defined strategies appear to be less technologically demanding than natural language-processing strategies. Sophisticated computer algorithms and natural language-processing programs require specialised subject knowledge, skill and time to develop, and require installation and instruction by experts. Whether costs to implement such programs are offset by savings from eliminating manual chart review and decreased patient harm is unknown and should be studied. Future studies also should quantify differences in time and personnel resources needed for the automated detection method, relative to other detection strategies. To our knowledge, four of the 43 unique articles report on commercially available automated harm-detection systems (MedLEE, ⁴⁸ dtsearch desktop, ³⁴ Nosocomial Infection Marker (NIM) ⁴⁴ and Dynamic Pharmaco-Monitoring System ⁴⁵). Other articles report on systems that employ data elements common across medical institutions (ie, ICD-9 codes used in the Complications Screening Program ^{8–10}) use software available to the VA or specific states (ie, RADARx, NY Antimicrobial Resistance Project ²¹ ⁴²) or are available through the Agency for Healthcare Research and Quality (ie, Patient Safety Indicators ^{15–17}). The availability of the remaining detection systems is either institution-specific or not made clear by their developers. While automated tools offer promise for efficient and accurate harm detection, there are important limitations that currently make them unsuitable for widespread application, particularly for interhospital comparisons. The reported sensitivity and specificity are variable and often low, suggesting that many episodes of harm may go undetected, and that many events identified will be false positives. Low accuracy may result from limited capability of the tool to detect events, or from flawed sources of data used for automated harm detection. For example, the reliability of field-defined systems can be affected by data entry errors or limited availability and accuracy of administrative codes, while natural language processing is sensitive to spelling and grammatical errors in free text. Both systems may include irrelevant or erroneous information, or exclude necessary information. For example, perhaps driven by medical-legal concerns, health professionals often do not include information about medical errors and resulting adverse events in their progress notes, problem lists and discharge summaries. Thus, an electronic medical record containing accurate, complete and easily accessible information can enhance the performance of an automated detection tool. Understanding these factors is important when evaluating the technological requirements, feasibility and inherent limitations of automated detection The variety of distinct automated methodologies makes comparisons between studies and between automated tools difficult and unreliable. Differences in the quality and content of data sources, as well as other unknowns such as accuracy of hospital documentation and coding practices, also complicate comparisons. The performance and methods of automated tools also may be institution-specific, making it difficult to generalise to other organisations or patient populations. For example, the Health Evaluation through Logical Processing system used by LDS Hospital in Salt Lake City, Utah relies on an advanced, highly integrated and dynamic information system that is not widely available. 11–14 We speculate that field-defined methods of automated harm detection will prove superior to natural language-processing methods, particularly if information about harm is accurately documented in electronic medical record systems in prespecified fields, thus allowing rapid and reliable detection of harm events. The methodological rigour of studies was variable. Only two-thirds of the 14 studies that compared an automated method with a gold standard chart review had verifiable validity results. Moreover, most studies compared automated harm-detection methods with other sources of data on patient harm (eg, voluntary reporting, 11–13 24 25 29 31 37 38 50 unstandardised chart reviews, 8 10 14 28 36 41 43 45 and prospective surveillance records 42 49). The validity of data from studies without chart review comparison is questionable given the absence of a defined denominator of events against which to measure the performance of the automated tool. The use of different methods, statistical analyses, denominator values and outcomes precludes a comparison of one automated method with another, as well as any attempt to statistically pool their results in a meta-analysis. Other authors have summarised the literature on automated harm-detection methods, but most have focused on automated methods specific to a type of harm (ie, adverse drug events 51 54 or nosocomial infections), 59 patient population (ie, paediatrics), 52 source of data (ie, administrative data) 57 or automated technology (ie, natural language processing). Our systematic review included all types of automated methods, harm events and sources of data evaluated in an inpatient setting. Furthermore, we provide an additional level of critical appraisal compared with other systematic reviews. For example, while Bates et al address differences between study methodologies by noting the presence or absence of gold standard comparison, they do not assess validity of studies or independently verify reported data. To our knowledge, this is the first systematic review to critically assess methodological rigour and study validity. While our review has several strengths, it also has limitations. First, the search strategy was limited to published English language articles. Second, we did not evaluate scientific meeting abstracts, nor did we contact investigators to identify unpublished studies. Third, publication bias must be considered in which studies with negative findings may not have reached dissemination venues. Fourth, most of the articles evaluated automated methods of harm detection among adults in general medical or surgical units, which may limit application to other populations and settings. Finally, our independent appraisal of the methodology and validity of key studies relied on information available within published articles. Our inability to verify the rigour and validity of all studies highlights the variation among even the most rigorous evaluations. In conclusion, our review identified numerous automated methods of harm detection in two broad categories-fielddefined methods and natural language processing—that identified a broad range of harm events, but particularly adverse drug events and nosocomial infections. Although many of these studies described the accuracy (sensitivity and specificity) of automated harm detection when compared with chart review, these results may not be valid due to methodological flaws in the conduct of many of these studies. Future studies assessing the performance of automated harm-detection methods should ensure that the gold-standard assessment (usually chart review) is performed by a blinded assessor, the gold-standard is applied independently of the results of the automated method (ie, charts not flagged by the automated method are reviewed for false negatives), and the automated method is tested in a set of patients that is independent of the set used to develop the automated method. Finally, efforts should be made to improve documentation of harm episodes in the patient record, in problem lists and when generating diagnosis codes, in order to # Original research improve automated harm detection. Future research should also focus on developing methods for real-time harm detection. In this way, automated harm-detection tools will realise their potential to describe accurately the incidence of harm in hospitalised patients, monitor changes from preventive interventions, and compare institutions and individual health professionals. Establishing universal standards and guidelines for the development, testing and utilisation of automated harm-detection methods, perhaps through a centralised agency, would allow data to be collected and compared in a rigorous, systematic fashion. # **Summary** Automated methods of harm detection are feasible, allow rapid scanning of a large number of patient records with minimal effort and have the potential to identify events as they occur or soon thereafter. However, the heterogeneity of automated methodologies, the spectrum of study rigour and the widely varying accuracy data suggest that currently available automated methods poorly measure the true incidence of harm. These methods cannot replace chart review as the gold standard but can provide estimates of the frequency of harm that can allow hospitals to identify priorities for action, make decisions about safety interventions and potentially monitor change over time. As automated harm-detection tools and scientific methods to test them evolve, there exists a great potential to positively impact patient safety. **Acknowledgements** We are grateful for the administrative support provided by the Institute for Healthcare Improvement. **Funding** Funding for the literature review was provided by the Institute for Healthcare Improvement (IHI) to MG and ADVC. Subsequent data analysis and interpretation, as well as conceptualisation, preparation, and review of the manuscript were not
financially supported. **Competing interests** JK-C was employed by Premier Inc. from 31 March 2007 to 2 July 2008. Premier has developed an automated event detection product, SafetySurveillor. This study does not reference or endorse this product. No other authors disclosed any potential conflicts of interest. Provenance and peer review Not commissioned; externally peer reviewed. ### **REFERENCES** - Institute of Medicine. To err is human. Washington, DC: National Academy Press, 1999 - Institute for Healthcare Improvement. Available at: http://www.IHI.org (accessed 14 Jan 2008). - Thomas EJ, Studdert DM, Burstin HR, et al. Incidence and types of adverse events and negligent care in Utah and Colorado. Med Care 2000;38:261—71. - Brennan TA, Leape LL, Laird NM, et al. Incidence of adverse events and negligence in hospitalized patients. Results of the Harvard Medical Practice Study I. N Engl J Med 1991;324:370—6. - Leape LL, Brennan TA, Laird N, et al. The nature of adverse events in hospitalized patients. Results of the Harvard Medical Practice Study II. N Engl J Med 1991;324:377—84. - Wilchesky M, Tamblyn R, Huang A. Validation of diagnostic codes within medical services claims. J Clin Epidemiol 2004;57:131—41. - Straus SE, Richardson WS, Glasziou P, et al. Evidence-based medicine: how to practice and teach EBM. 3rd edn. Edinburgh: Churchill Livingstone, 2005. - lezzoni LI, Foley SM, Heeren T, et al. A method for screening the quality of hospital care using administrative data: preliminary validation results. QRB Qual Rev Bull 1992:18:361—71 - Weingart SN, lezzoni LI, Davis RB, et al. Use of administrative data to find substandard care: validation of the complications screening program. Med Care 2000;38:796—806. - Lawthers AG, McCarthy EP, Davis RB, et al. Identification of in-hospital complications from claims data. Is it valid? Med Care2000;38:785—95. - Classen DC, Pestotnik SL, Evans RS, et al. Computerized surveillance of adverse drug events in hospital patients. JAMA 1991;266:2847—51. - Evans RS, Pestotnik SL, Classen DC, et al. Development of a computerized adverse drug event monitor. Proc Annu Symp Comput Appl Med Care 1991:23—7. - Samore MH, Evans RS, Lassen A, et al. Surveillance of medical device-related hazards and adverse events in hospitalized patients. JAMA 2004;291:325—34. - Evans RS, Larsen RA, Burke JP, et al. Computer surveillance of hospital-acquired infections and antibiotic use. JAMA 1986;256:1007—11. - Polancich S, Restrepo E, Prosser J. Cautious use of administrative data for decubitus ulcer outcome reporting. Am J Med Qual 2006;21:262—8. - 16. McDonald KM, Romano PS, Geppert J, et al. Measures of Patient Safety Based on Hospital Administrative Data—The Patient Safety Indicators. Technical Review Number 5. (Prepared by the University of California San Francisco-Stanford Evidence-based Practice Center under Contract No. 290-97-0013). AHRQ Publication No. 02-0038. Rockville, MD: Agency for Healthcare Research and Quality; August 25 2002. - Zhan C, Battles J, Chiang YP, et al. The validity of ICD-9-CM codes in identifying postoperative deep vein thrombosis and pulmonary embolism. Jt Comm J Qual Patient Saf 2007;33:326—31. - Nebeker JR, Yarnold PR, Soltysik RC, et al. Developing indicators of inpatient adverse drug events through nonlinear analysis using administrative data. Med Care 2007;45(10 Suppl 2):S81—8. - Benson M, Junger A, Fuchs C, et al. Using an anesthesia information management system to prove a deficit in voluntary reporting of adverse events in a quality assurance program. J Clin Monit Comput 2000;16:211—17. - Trick WE, Zagorski BM, Tokars JI, et al. Computer algorithms to detect bloodstream infections. Emerg Infect Dis 2004;10:1612—20. - Brown S, Black K, Mrochek S, et al. RADARx: recognizing, assessing, and documenting adverse Rx events. Proc AMIA Symp 2000:101—5. - Azaz-Livshits T, Levy M, Sadan B, et al. Computerized survelliance of adverse drug reactions in hospital: pilot study. Br J Clin Pharmacol 1998;45:309—14. - Levy M, Azaz-Livshits T, Sadan B, et al. Computerized surveillance of adverse drug reactions in hospital: implementation. Eur J Clin Pharmacol 1999;54:887—92. - Bagheri H, Michel F, Lapeyre-Mestre M, et al. Detection and incidence of druginduced liver injuries in hospital: a prospective analysis from laboratory signals. Br J Clin Pharmacol 2000;50:479—84. - Dormann H, Muth-Selbach U, Krebs S, et al. Incidence and costs of adverse drug reactions during hospitalisation: computerised monitoring versus stimulated spontaneous reporting. *Drug Saf* 2000;22:161—8. - Dormann H, Criegee-Rieck M, Neubert A, et al. Implementation of a computerassisted monitoring system for the detection of adverse drug reactions in gastroenterology. Aliment Pharmacol Ther 2004;19:303—9. - Roos LL Jr, Cageorge SM, Austen E, et al. Using computers to identify complications after surgery. Am J Public Health 1985;75:1288—95. - Hirschhorn LR, Currier JS, Platt R. Electronic surveillance of antibiotic exposure and coded discharge diagnoses as indicators of postoperative infection and other quality assurance measures. *Infect Control Hosp Epidemiol* 1993;14:21—8. - Seeger JD, Schumock GT, Kong SX. Estimating the rate of adverse drug reactions with capture—recapture analysis. Am J Health Syst Pharm 1996;53:178–81. - Hougland P, Xu W, Pickard S, et al. Performance of international classification of diseases, 9th revision, clinical modification codes as an adverse drug event surveillance system. Med Care 2006;44:629—36. - Whipple JK, Quebbeman EJ, Lewis KS, et al. Identification of patient-controlled analgesia overdoses in hospitalized patients: a computerized method of monitoring adverse events. Ann Pharmacother 1994;28:655—8. - Jha AK, Kuperman GJ, Teich JM, et al. Identifying adverse drug events: development of a computer-based monitor and comparison with chart review and stimulated voluntary report. J Am Med Inform Assoc 1998;5:305—14. - Murff HJ, Forster AJ, Peterson JF, et al. Electronically screening discharge summaries for adverse medical events. J Am Med Inform Assoc 2003; 10:339-50. - Forster AJ, Andrade J, van Walraven C. Validation of a discharge summary term search method to detect adverse events. J Am Med Inform Assoc 2005;12:200—6. - Hartis CE, Gum MO, Lederer JW Jr. Use of specific indicators to detect warfarinrelated adverse events. Am J Health Syst Pharm 2005;62:1683—8. - McIntosh ST, Petropoulos JB. Using data from automated dispensing units to identify adverse drug reactions. Am J Health Syst Pharm 2005;62:2397—400. - Kilbridge PM, Campbell UC, Cozart HB, et al. Automated surveillance for adverse drug events at a community hospital and an academic medical center. J Am Med Inform Assoc 2006;13:372—7. - Kilbridge PM, Alexander L, Ahmad A. Implementation of a system for computerized adverse drug event surveillance and intervention at an academic medical center. J Clin Outcomes Manage 2006;13:94—100. - Pokorny L, Rovira A, Martin-Baranera M, et al. Automatic detection of patients with nosocomial infection by a computer-based surveillance system: a validation study in a general hospital. Infect Control Hosp Epidemiol 2006;27:500—3. - Szekendi MK, Sullivan C, Bobb A, et al. Active surveillance using electronic triggers to detect adverse events in hospitalized patients. Qual Saf Health Care 2006;15:184—90. - Bellini C, Petignat C, Francioli P, et al. Comparison of automated strategies for surveillance of nosocomial bacteremia. Infect Control Hosp Epidemiol 2007;28:1030—5. - Graham PL 3rd, San Gabriel P, Lutwick S, et al. Validation of a multicenter computer-based surveillance system for hospital-acquired bloodstream infections in neonatal intensive care departments. Am J Infect Control 2004;32:232—4. - Huang C, Noirot LA, Reichley RM, et al. Automatic detection of spironolactone—related adverse drug events. AMIA Annu Symp Proc 2005:989. - Brossette SE, Hacek DM, Gavin PJ, et al. A laboratory-based, hospital-wide, electronic marker for nosocomial infection: the future of infection control surveillance? Am J Clin Pathol 2006;125:34—9. - Seger AC, Jha AK, Bates DW. Adverse drug event detection in a community hospital utilising computerised medication and laboratory data. *Drug Saf* 2007:30:817—24. - Weissman JS, Rothschild JM, Bendavid E, et al. Hospital workload and adverse events. Med Care 2007;45:448–55. - Penz JF, Wilcox AB, Hurdle JF. Automated identification of adverse events related to central venous catheters. J Biomed Inform 2007;40:174 –82. - Melton GB, Hripcsak G. Automated detection of adverse events using natural language processing of discharge summaries. J Am Med Inform Assoc 2005;12:448—57. - Haas JP, Mendonca EA, Ross B, et al. Use of computerized surveillance to detect nosocomial pneumonia in neonatal intensive care unit patients. Am J Infect Control 2005;33:439—43. - Ferranti J, Horvath MM, Cozart H, et al. Reevaluating the safety profile of pediatrics: a comparison of computerized adverse drug event surveillance and voluntary reporting in the pediatric environment. Pediatrics 2008;121:e1201—7. - Handler SM, Altman RL, Perera S, et al. A systematic review of the performance characteristics of clinical event monitor signals used to detect adverse drug events in the hospital setting. J Am Med Inform Assoc 2007;14:451–8. - Jacobs B. Electronic medical record, error detection, and error reduction: a pediatric critical care perspective. *Pediatr Crit Care Med* 2007;8(2 Suppl):S17—S20. - Chaudhry B, Wang J, Wu S, et al. Systematic review: impact of health information technology on quality, efficiency, and costs of medical care. Ann Intern Med 2006;144:742—52. - Anderson JG. Information technology for detecting medication errors and adverse drug events. Expert Opin Drug Saf 2004;3:449—55. - Bates DW, Evans RS, Murff H, et al. Detecting adverse events using information technology. J Am Med Inform Assoc 2003;10:115—28. - Murff HJ, Patel VL, Hripcsak G, et al. Detecting adverse
events for patient safety research: a review of current methodologies. J Biomed Inform 2003;36:131—43. - Zhan C, Miller MR. Administrative data based patient safety research: a critical review. Qual Saf Health Care 2003;12(Suppl 2):ii58—63. - Spyns P. Natural language processing in medicine: an overview. Methods Inf Med 1996;35:285—301. - Leal J, Laupland KB. Validity of electronic surveillance systems: a systematic review. J Hosp Infect 2008;69:220—9. | Reference | Patient
Sample
and Time
Frame | Sampling
Strategy | Specialty | Events
Identified | Automated
Event
Dataset
Sample Size | Comparison
Event
Dataset
Sample Size | Strategy of Event
Identification | Method of
Automated Event
Identification | Degree of
Automation | Source of
Automated Event
Data | Source of
Comparison Event
Data | Method of
Comparison Event
Identification | Comments | |---|---|---|---|--|--|--|---|--|---|--|---|--|--| | Complication | s Screening | g Program | | | | | | | | | | | Used ICD-9 CM codes to screen for | | Lawthers,
2000 [10] | Adults
1994 | Combination of random sample and risk stratification sampling | Major surgical and
medical risk
groups | Adverse
events:
"complications
of hospital
care" | 1298 cases:
634 California,
664
Connecticut | 1298 cases | Complications
Screening
Program | Field Defined | Partial | ICD-9 CM codes | Medical record and
ICD -9 CM codes | Chart review, not otherwise specified | complications. When code was triggered, computer algorithm tested for specific qualifications to categorize the complication further. This study used Medicare 1994 MEDPRO database claim codes and a 2 stage review to compare the codes to manual review. Study designed with chart review after computerized detection. Number of cases per screen were relatively small. Reviewers unblinded to trigger codes. | | Weingart,
2000 [9] | Geriatrics
1994 | Random | Unknown | Adverse Event:
complications
of care
including
surgical compli-
cations,
infections,
falls, ADE etc | 1025
Medicare
beneficiaries | NA | Complications
Screening
Program | Field Defined | Partial | Administrative Data | NA | NA | Used administrative data from Medicare patients in California and Connecticut in 1994. Hospitals stratified by expected complication rates, then randomly selected cases flagged with surgical and medical complications as well as unflagged controls were collected. Cases subjected to peer review physician judgments to attempt to validate the CSP. | | lezzoni, 1992
[8]
Computer Alg | Adults
1988 | Unknown | Gen Med and
Gen Surg
(excluded
obstetric patients) | Adverse
events | 100 discharge
abstracts.
Original
sample size
unknown. | 100 standard
hospital
discharge
abstracts | Appears to be
Complications
Screening
Program (CSP) or
a precursor to
CSP. | Field Defined | Partial | Discharge
summary; ICD-9
diagnosis and
procedure codes | Discharge
summary and
administrative data | Chart review, not otherwise specified | Computerized screening based on patient age, sex, ICD-9-CM diagnosis and procedure codes, DRG, and number of days from admission to principal major surgeries or procedures. 27 quality screens used to identify potential adverse events. Physician reviewers only had access to administrative data and had poor inter-rater reliability. | | Nebeker,
2007 [18] | Adults
2001 and
2003 | Random | Unknown | Adverse drug
events | 3987
admissions | 3987
admissions | Computer algorithms | Field Defined | Chart review for
study, however
unclear whether
strategy aims to
be fully or
partially
automated. | ICD-9 CM codes | Medical record | Gold standard chart
review | Study used Hougland, 2006 ²⁸ methodology to specifically apply HOCTA (hierarchically optimal classification tree analysis) to administrative data to develop surveillance rules for the identification of ADEs manifesting as either bleeding or delirium. Specifically interested in creating models using this type of nonlinear statistical method for 2 particular ADEs. Model's validation was limited and may be overfit. Requires expert computer programming. | | Trick, 2004
[20] | Adults
9/1/01-
2/28/02 | Sequential | Unknown | Infection | 135 positive
blood cultures | 144 positive
blood cultures | Computer
algorithm | Field Defined | Full and Partial | Medical record, lab
database,
pharmacy
database, radiology
database,
microbiology | Medical record, lab
database,
pharmacy,
radiology,
microbiology | Gold standard chart
review | Comparison of manual and computer assisted bloodstream central venous catheter infection surveillance using data from two hospitals. Different computer algorithms developed for full or partial automation were tested. Findings may not generalize to other institutions. | | Benson, 2000
[19] | Patients
aged 14
years and
older
1998 | Sequential | Patients under anesthesia | Adverse Event | 16,019
surgical
procedures | 16,019
surgical
procedures | Computer
algorithm:
structure query
language | Field Defined | Full | Online anesthesia documenting software (Anesthesia Information Management System, or AIMS) | Anesthesia record | Other: manually recorded information during perioperative period by anesthesiologist | AIMS database queried for 9 common perioperative adverse events with structured query language (SQL) queries. | | [21] | Unknown
7/1/99 to
9/30/99
Evaluation | | Unknown
cal Processing | | 1643 RADARx
alerts over
study period | Unknown | Computer
Algorithms:
RADARx | Field Defined | Partial | Lab database,
pharmacy
database,
demographics,
diagnoses and
procedures | | Other: "traditional
methods", not
otherwise specified | RADARx (Recognizing, Assessing, and Documenting Adverse Rx events) is a VA software program integrating computerized adverse drug event (ADE) screening, probability assessment, documentation and reporting capabilities. Study evaluated patient data every four hours for possible ADEs, generated and stored alerts. Clinical pharmacists reviewed alerts daily, documented findings, and contacted clinicians in real-time. Used Naranjo algorithm to assess causality. Major source of algorithm rules from Jha, 1998 30. Manual review of 8-20 alerts daily costed 10-30 minutes daily. RADARx used 12 seconds of CPU time every 4 hours. Initially involved 30 minutes installation time and 1-2 hours to run mapping tools. RADARx rules designed as screens and meant to be sensitive and not specific. | |-----------------------|--|------------|---|-------------------------------------|--|--|-----------------------------------|--------------------------------|---------|---|---|---|---| | Samore, 2004
[13] | | Sequential | Other: all "regular
and short stay"
pts except
obstetrics and
neonates. | Adverse
medical device
events | 20,441 pts | 20,441 pts | HELP and computer based flags | Field Defined | Partial | Medical record, lab
database,
pharmacy
database,
radiology
database, billing
data, ICD-9 CM
codes - HELP
integrates multiple
interfaces | | Voluntary reporting and ICD-9 discharge codes | Automated surveillance designed to detect device related patient harm (AMDE) based on existing HELP adverse drug event detection methods. 7 categories of automated flags based on common complications and availability of electronic data, then flagged charts reviewed manually. AMDE definition includes all definitions of harm such as infection, bleeding, dropping oxygen saturations etc. | | Classen, 1991
[11] | Adults
5/1/89 to
10/31/90 | Sequential | Obstetrics, ICU,
Gen Med and
Gen Surg | Adverse drug
events | 36,653
patients | NA | HELP | Field Defined | Partial | Medical record, lab
database,
pharmacy database | | voluntary reporting and
stimulated voluntary
reporting | Results from the HELP system at the LDS Hospital, Utah using highly integrated electronic medical record. Daily computerized ADE report generated from automated surveillance of the medical record for defined signals, followed by clinical pharmacist review. Results from HELP information system at LDS | | Evans, 1991
[12] | Unknown
5/89-5/90 | Sequential | Unknown | Adverse drug events | 23,297
patients | 25,142
patients from
5/1/88-5/1/89 | HELP | Field Defined | Partial | Medical record, lab
database,
pharmacy
database,
demographics | Voluntary reporting | voluntary reporting | hospital in Utah. ADE monitor program generated daily list of alerts using automated signals. Signaled charts were reviewed by trained nurse and pharmacist to verify ADE. Based on Classen 1991 8 rules/program. Study evaluated computer screening versus | | [14] | Unknown
2/84 to
3/84 | Sequential | Unknown | Infection | 4,679
patients; 217
with
suspected NI | 217 patients
with
suspected NI | HELP and other | Field Defined | Partial | Medical record, lab
database,
microbiology test
results | Medical record | Chart review, not
otherwise specified | infection control practitioner screening versus infection control practitioner screening, both followed by chart review. The overall computerized system looked at patients with 1) hospital-acquired infections, 2) who were not receiving antibiotics to which their pathogens were susceptible, 3) who could be receiving less expensive antibiotics, or 4) who were receiving prophylactic antibiotics for too long. Time required: 8.6 hours to complete computerized report of unverified alerts, compared to 138 hours for infection control practitioners. Physician review took 15 minutes per chart to verify alerts. | | Natural Langu | age Proces | sing | | | | | | | | | | | Designed to use chest x-rays from two neonatal | | Haas, 2005
[49] | Children
3/1/01-
1/31/03 | Sequential | NICU | Pneumonia | 1692 patients | 1692 patients | Natural Language
Processing | Natural Language
Processing | Full | Radiology
database:
specifically chest x-
rays | Radiology
database, medical
record,
microbiology,
interviews with
caregivers | Prospective infection surveillance by experienced infection control professional. | intensive care units to detect nosocomial pneumonia in neonates. NLP program screened chest x ray reports and flagged reports indicative of pneumonia according to rules derived from National Nosocomial Infection Surveillance System. | | Melton, 2005
[48]
Patient Safety | 1996-2000 | Random
sampling and
Sequential
(all electronic
discharge
summaries
during study
years) | Unknown | events:
specifically 45
NYPORTS | 1000 charts
randomly
sampled and
then 57,422
electronic
discharge
summaries | 1000 charts
(random
sample during
study period) | Natural Language
Processing | Natural Language
Processing | Partial | Discharge
summaries | Full electronic chart
and combined
electronic chart and
paper chart for a
subset of 100 pts. | Gold standard chart
review | Natural Language Processing system (MedLEE) to identify 45 NY Patient Occurrence Reporting and Tracking System event types. Discharge summaries converted to coded form then tested. Chart review by physician and independant informatician of random sample of 1000 charts to assess performance of NLP program. Results biased towards patients with electronic discharge summaries. This method is technologically intensive. | |---|---|---|--|--|---|---|---|--------------------------------|---------|---|--|-------------------------------|---| | Zhan, 2007
[17] | Medicare
beneficiari
es 2002 to
2004 | Random | Gen Surg | Deep Vein
Thrombosis
(DVT) and/or
Pulmonary | 20,868
hospital
discharges
identified as
surgical
patients | patients | Patient Safety
Indicators | Field Defined | Full | ICD-9 CM codes | Medical record | Gold standard chart
review | DVT/PE events flagged by ICD-9 CM codes were compared to those discovered by gold standard chart review. The sample studied was a random sample abstracted by the Medicare Patient Safety Monitory System. | | Polancich
2006 [15] | Unknown | Unknown | Unknown | Hospital
acquired
decubitus
ulcers | not reported | 123 charts
from list of
patients
identified
through PSI
as having
decubitus
ulcers | Patient Safety
Indicators | Field Defined | Full | Administrative data,
billing data, ICD-9
CM diagnosis
codes, procedure
codes | Medical Record | Gold Standard Chart
Review | Study designed to test validity of Agency for Healthcare Reseach and Quality (AHRQ) PSIs for detecting hospital acquired decubitus ulcers. Only a sample of cases were manually reviewed. | | McDonald,
2002 [16] | | NA | NA | Adverse
events | NA | NA | Patient Safety
Indicators | Field Defined | Full | Discharge
summaries; ICD-9
codes | NA | NA | Technical report providing detailed coding manual, including numerator, denominator, and ICD-9 codes for defining accepted, experimental, and rejected Patient Safety Indicators (PSIs). Several of the PSIs were derived from other harm detection methods. Report summarized validity information on PSIs, when this information was available from other studies. | | Multiple Detect Penz, 2007 [47] Weissman. | Adults 99 - 12/04 Adults 10/1/00 to | ds
Sequential | MICU, SICU and other (placement of Central Venous Catheters) | | 316 pt records
24,676;
includes 6,841
pos. screens
and 17,835 | 30 high
probability | Computer algorithms and Natural Language Processing Complications Screening Program, Patient Safety Indicators, and Bates 1995 | Natural Language
Processing | Partial | Text records, daily progress notes, consultation notes, nursing notes, procedure notes, operative reports, discharge summaries Medical record; billing data; ICD-9 | Text records, daily progress notes, consultation notes, nursing notes, procedure notes, operative reports, discharge summaries | Gold standard chart
review | Study compared two methods for semi- automated review of text records within the VA database using NLP (MedLEE) and a phrase matching algorithm (PMA). Reviewers instructed to use only the language of notes to determine if adverse event occurred. Methods limited by incomplete or inaccurate documentation, incomplete coding, spelling errors, sentence structure abbreviations. Time/technology intensive. Screens identified by a combination of Complications Screening Program, Patient Safety Indicators, and Bates 1995 ²⁶ methods. Gold standard full chart review done on all positive screens and on 1990 negative screens (of 17,835 negative screens). Article focused on the relationship between adverse events and hospital workload. Compared adverse events | | 2007 [46] | 9/30/01 | Random
lologies: Lab S | and surgical Signal Detection | Adverse event | neg. screens | NA | methodology | Field Defined | Partial | codes | NA | NA | across hospitals. | | Dormann,
2004 [26] | Adults
6/97 -
12/97 | Sequential | Gastroenterology | Adverse drug events | 474
admissions of
377 patients;
109 ADEs | | Automated lab signal detection | Field Defined | Full | Demographics,
history, lab findings,
diagnosis, and
drugs | Medical record |
Gold standard chart
review | Used automated lab signals (ALS) and changes in ALS to identify ADEs. Automated system used to flag potential ADEs which were then sent as an alert to physicians. Use of delta ALS (change) resulted in improvement over Dormann, 2000 methodology. | | Bagheri, 2000
[24] | Adults
6/97 -
10/97 | Sequential | Gen med and other medical subspecialties | Adverse drug
event:
specifically
drug induced
liver injury. | 147 patients
(156 ALT
values, 159
AP) | Unknown | Detection based
on serum enzyme
values | Field Defined | Partial | Medical record, lab
database,
pharmacy
database,
demographics,
social history (i.e.
drug/alcohol use) | Voluntary reporting | voluntary reporting and stimulated voluntary | Prospective study from Tolouse, France to assess incidence/detection of drug induced biochemical liver abnormalities. Patients selected by automated computer screening of alanine aminotransferase (ALT) and alkaline phosphatas (AP) values in electronic lab database. Medical charts then reviewed to determine if this was ADE. Computerized detection compared to voluntary reporting from the same time period. Relatively easy, technologically simple method. | |--------------------------|------------------------------------|---|---|---|---|---|---|---------------|--|---|--|--|--| | Dormann,
2000 [25] | Unknown | Sequential | Gen Med | Adverse drug
events | 379 pts | Unknown | Computer based monitoring of automatically generted lab signals and reports | Field Defined | Partial | Lab database | Voluntary reporting | Stimulated voluntary report | Automated identification of cases in a German hospital, followed by manual evaluation by clinical pharmacist and clinicians. Verified ADE matched to controls to assess costs and length of hospital stay issues. | | Levy, 1999
[23] | All age
groups
4/97 - 5/97 | Sequential | Gen Med | Adverse drug
events | 199
admissions
(192 patients) | 199
admissions | Automated lab signal detection | Field Defined | Partial | Lab database | Lab database and clinical data | Gold standard chart | Implementation of the pilot program described
in Azaz-Livshits 1998 ¹⁹ . Computerized lab data
monitored to detect ADEs using the same
signals as the pilot study. | | 1998 [22] | | | Gen Med | Adverse drug | 153
admissions | 153
admissions | Automated lab signal detection | Field Defined | Partial | Lab database | Lab database and
clinical data | Gold standard chart | Pilot program to develop and assess computerized laboratory data as a detection tool for ADE in 34 bed medical ward in Jerusalem, Israel. Lab signals generated by computer, then verified by team. Limited computerized patient data at this hospital, however lab data was fully electronic. Generalizable to other institutions with limited electronic data (lab only). Cost of this system reasonable compared to costs of ADEs. | | Other Automa | ted Method | Random and | or Billing Code D | etection | | | | | | | | | | | Hougland,
2006 [30] | Adults
2001
calendar
year | Flagged
sample (from
records with
at least one
flagged ADE
code) | Unknown | Adverse drug events | 3103
inpatients:
1961 random
sample, 1142
flagged
sample | Unknown | Automated ICD-9 code strategy | Field Defined | Full: however
review of
flagged charts
here for study
purposes | ICD-9 CM codes | Medical record | | Expert panel identified 416 ICD-9 CM codes to
represent ADEs (flagged ADEs). Then chart
review performed to ascertain codes' ability to
detect/identify ADE. | | Seeger, 1996
[29] | Unknown
7/91-6/94 | Sequential | Unknown | Adverse drug events | 52,695
admissions | 52,695
admissions | Capture-recapture
method applied to
automatic
surveillance via
medical record
coding | Field Defined | Full | ICD-9 CM codes | Voluntary reporting | | ICD-9 CM codes indicative of 7 categories of ADRs used to scan patient database at University of Illinois at Chicago Medical Center to identify ADRs (electronic sample). Capture-recapture assumed all subgroups within population have equal chance of being captured each time. | | Hirschhorn,
1993 [28] | Adults
4/15/87 to
10/1/89 | Sequential | Obstetrics
(Women with
nonrepeat,
nonelective
cesarean sections
and perioperative
prophylaxis with
cefazolin or
cefoxitin alone.) | Infection | 2,197 women | 457 records
(Randomly
selected from
full sample) | Screen for infection based on ICD-9 codes and antibiotic exposure | Field Defined | Full | Pharmacy database and ICD-9 codes | Medical record and anesthesia records | Chart review, not | Tool specifically detected cases of cesarean section infection using ICD-9-CM codes and parenteral postoperative antibiotic (PPA) exposure. Performance of indicators depended on accuracy of coded discharge diagnoses and automated pharmacy records. ICD-9 and infection codes listed in the appendix. | | Roos, 1985
[27] | Adults
1976 | Sequential | Readmissions
following
hysterectomy,
cholecystectomy,
and
prostatectomy
r Automated Trigg | Surgical complications | Hyst: 387;
Chol: 695;
Prost: 488 | Hyst: 387;
Chol: 695;
Prost: 488 | Claims review | Field Defined | Full | ICD-9 and ICDA-8
diagnostic codes | Claims data
(service use) and
diagnoses.
Additional
information
provided on about
20 cases per
procedure. | 2 independent
physician specialists
rated data; met to
resolve discrepancies. | Computer algorithm developed on 1974 Manitoba surgical claims database, revised on 1975 data, and tested on 1976 data. Used 3 or 4 digit ICDA-8 codes in first readmission after surgery for up to a 2 year period. Focused only on readmissions following hysterectomy, cholecystectomy, prostatectomy. Appendix lists of ICD-9 and ICDA-8 codes with appropriate timeframe of reference for different complications. | | Ferranti, 2008
[50] | Pediatric
12/1/04-
1/31/06 | Sequential | PICU, Gen Med,
Transitional Care | Adverse drug events | 4,711
admissions
(51,046
patient-service
days) | 4,711
admissions
(51,046
patient-
service days) | Automated triggers: abnormal lab values, antidote administration, drug-lab combination triggers. | Field Defined | Partial | Lab database,
pharmacy
database. | Voluntary reporting | Voluntary reporting | Duke University Hospital evaluation of ADE detected by computerized surveillance versus voluntary reporting system. Voluntary reporting ADE rate = 1.8 events per 1000 patient days versus 1.6 events per 1000 patient days for automated method. (No statistical difference between methods). Authors postulate the reason automated surveillance fails to outperform voluntary reporting in this specific pediatric population is that the automated triggers need to be refined and tailored to better match pediatric situations. | |-------------------------|---|------------|--|---------------------|--|---|--|---------------|---------|---|--|---------------------------------------|---| | Bellini, 2007 | Adults 2
year
period.
Date not
stated | Sequential | MICU, SICU, Gen
Med, Gen Surg | Infection | 669 cases of a positive blood culture | 669 cases of
a positive
blood culture | Unnamed system with similarities to the CDC's NISS method | Field Defined | Full | Microbiological
data,
administrative
data (patient ID,
ward, and date of
admission) | Medical record | Chart review, not otherwise specified | Identified new bacteremia cases as community- acquired or nosocomial (catheter related and other origins). Lausanne, Switzerland. Automated method similar to Center for Disease Control's Nosocomial Infection Surveillance System (NISS), but differed in two ways: a) did not separate blood stream infections (BSIs) that were documented microbiologically versus clinical sepsis without microbiologically oreus clinical sepsis without microbiological documentation, b) focused on catheter related infection versus other sites, instead of excluding bacteremia related to other (non-catheter) sites. Method used data available in most health care electronic record systems. | | Kilbridge,
2006 [37] | Unknown
3/1/05 -
10/31/05 | Sequential | Unknown | Adverse drug events | 25,177 patients at univ hospital, 8029 pts at community hosp | Unknown | Automated
triggers | Field Defined | Partial | Lab database,
pharmacy
database,
demographic data | Voluntary reporting | voluntary reporting | Comparison of ADE rates and nature between academic center and community setting using methods reported in Kilbridge, 2006 ³⁶ . Pharmacist and physician chart reviewers. | | Kilbridge,
2006 [38] | Unknown
3/05-4/05 | Sequential | Unknown | Adverse drug events | 6940 pts | Unknown | Automated
triggers | Field Defined | Partial | Lab database,
pharmacy
database,
demographic data | Voluntary reporting | voluntary reporting | Duke University Hospital. Detection of ADEs by automated trigger signals derived from various lab abnormalities, physician orders etc. Daily list of triggers evaluated by 2 pharmacists and weekly reviewed by physician. Automated rules derived and modified from HELP studies. Specialized resources involved, and 30 person hours per week. Programming resources considerable, perhaps not widely available. | | Pokorny 2006 | Adults
4/15/99-
6/30/02 | Sequential | ICU - general | Infection | 1043 patients | 194 pts in
ENVIN-UCI
project from
99-02 (see
methods) | Computer surveillance | Field Defined | Unknown | Lab database, pharmacy database, administrative data, diagnoses data | Medical record,
bedside clinical
data. | Other: "bedside data collection" | Retrospective analysis companing computer based surveillance using three nosocomial infection (NI) suspicion criteria (positive microbiology, antibiotic administration, clinical diagnosis infection) with rates of infection obtained from prospective incidence study done over the same period (ENVIN - UCI) which consisted of bedside collection of data on ICU infections. NI classified according to international definitions, onset > 48 hrs after admission. | | | Adults
6/03 to
9/03 | Sequential | All units, except
pediatric and
NICU | Adverse event | 327 medical
records; 493
trigger events | NA | Automated trigger tools | Field Defined | Partial | Lab database and pharmacy database | NA . | N A | Automated identification of charts with trigger tool (using 21 electronic triggers), followed by a manual review by a nurse and pharmacist (followed by additional physician review if no agreement). All records with 2 or more triggers were selected, followed by cases with triggers from medical list, abnormal lab list, and positive blood culture selected on a sequential rotating basis. Time: 35 minutes/chart not requiring physician review; 45 minutes/chart if physician review required. | | Forster, 2005
[34] | Adults
fiscal 2002 | | Gen Med, Gen
Surg | Adverse event Adverse drug event: | 245 patients 1,952 inpatient beds | 245 patients | Computerized
screen for trigger
words in free text | Natural Language
Processing | Partial | Discharge
summaries | Discharge
summaries | Gold standard chart
review | Substudy of Ottawa Hospital Patient Safety study. Automated adverse event lexicon made up of 104 terms used by Murff 2003 ³¹ . Computerized search engine scanned discharge summaries (dtsearch desktop) and detected charts with potential harm, which were then reviewed by MD. Specificity found to be higher for nonelective admissions and discharge summaries dictated by residents and staff versus medical students. Automated detection reduced physician time by one-fifth. Automated triggers developed to detect warfarin associated ADE. Automated triggers are INR > 3.0 and pharmacy orders for Vitamin K. Pharmacist reviewed triggers monthly. | |------------------------|----------------------------|--|---|---|---|---|--|---|--|--|--|--|---| | Hartis, 2005
[35] | Unknown
7/02 -
12/03 | Sequential | Unknown | specifically
warfarin
associated. | from 6
community
hospitals | NA | Automated
triggers | Field Defined | Partial | Lab database,
pharmacy database | NA | NA | Interventions made when trigger confirmed, (i.e. education and therapy change). Goal of study is to assess ADE rates pre and post interventions. | | McIntosh,
2005 [36] | Unknown
2003
January | Sequential:
all tracer
drugs
dispensed
during time
period | Unknown | Adverse drug
events | 775 tracer
drugs ordered
from
Automatic
Dispensing
Units (ADU) | Unknown | Computerized data from automated dispensing units | Field Defined | Partial | other: ADU | not specified | Chart review, not otherwise specified, and voluntary reporting | Miami Veterans Affairs Medical Center study to determine if monitoring the removal of tracer drugs (such as naloxone) from ADU improves ADE reporting. Investigator reviews charts from ADU generated list. Upon removal of tracer drug, ADU prompts reply to the question "is medication ordered due to ADR/allergy". If the answer is yes, then chart reviewed to determine ADE. Automated surveillance data as reliable as answers to questions prompted by ADU - thus education of nurses and other staff is key. | | Murff, 2003
[33] | Adults
1/1/00-
7/00 | Random
(424) and
sequential
(all remaining
admissions
during study
pd) | Gen Med and
Medicine
subspecialties | Adverse drug
events,
adverse
events, other:
diagnostic
errors,
operative
complications,
falls | Cohort 1: 424
randomly
selected
admissions
Cohort 2:
2826
remaining
admissions
over study
period | 295 of cohort
1 and 145 of
cohort 2 via
complex
sampling/sub
sampling and
manual
review
process (see
Reference for
details) | Computerized
screen for trigger
words in free text | Natural Language
Processing
(Keyword triggers
within free text). | Full (goal is a
fully automated
system, manual
review of
subsamples
performed for
study. | Discharge
summaries | Medical record (not
otherwise
specified) | Gold standard chart
review | Brigham and Women's Hospital, using Brigham Integrated Computer system. Computerized screening tool searched free text discharge summaries for trigger words indicating possible adverse events. List of automated trigger words compiled using Harvard Medical Practice Study definitions as base. Electronic method alone versus electronic plus manual review compared for 2 cohorts. Computerized screen searches for programmed key words (not as sophisticated as natural language processing programs that "read" free text). Reviewers blinded to whether screening tool had identified the admission. Complex sampling/subsampling methods plus manual review process for each cohort. | | Jha, 1998 [32] | Adults
10/94-5/95 | Sequential | MICU, SICU, Gen
Med, Gen Surg | Adverse drug events | 21,964 patient-
days | 21,964
patient-days | Automated
triggers | Field Defined | Partial | Medical record | Medical record | Gold standard chart
review and stimulated
voluntary report | Study of computer based ADE identification using modified Classen 1991 8 (HELP) rules to create automated triggers with which the electronic record was screened. Rules modified during the study to increase PPV, and new rules created. Trained reviewer and physician were blinded to detection method. 11 personhours per week for automated method versus 55 for chart review and 5 for voluntary reporting. | | Whipple,
1994 [31] | Unknown | Sequential
 Unknown | | | 4669 patients
who received
PCA | Computerized search strategy | Field Defined | Partial | Billing data, clinical
admission data,
transfer, discharge
and death
databases | Voluntary reporting | voluntary reporting | Retrospective computerized data retrieval study to identify ADE related to PCA use. First identified applicable billing codes for overdose, plus patients who had other evidence for overdose (i.e. ICU transfer etc). Charts with possible overdose their reviewed manually. Study used hospital's current computer system as they did not have funds for a new computer or computer programs, thus this technology could be generalizable. | | Other Automa | Other Automated Methodologies: Specific Named Programs | | | | | | | | | | | | | | |-------------------------|--|------------|-------------------------|--|--|---------------------------------|---|---------------|---------|--|-----------------------------|---|--|--| | Seger, 2007
[45] | Adults
7/1/02 to
12/31/02 | | Gen Med and
Gen Surg | Adverse drug events | 3,428
patients, of
which 215 had
high or critical
alerts | unique | Dynamic
Pharmaco-
Monitoring System | Field Defined | Partial | Lab database,
pharmacy
database, and
demographics | | Chart review, not otherwise specified | Dynamic Pharmaco-monitoring system identified critical, high, medium, and low alerts. This method focused on the critical and high alerts only. Separately identified preventable and non-preventable ADE. Provides a rough estimate of cost and time required (1.5 hours/day of pharmacist time - results in expected cost savings of \$49,000 in first year). | | | Brossette,
2006 [44] | Unknown
12/1/03 to
12/3/03
and
4/26/04 to
4/29/04 | Sequential | Unknown | Infection | 907 | | Nosocomial
Infection Marker
(NIM) | Field Defined | Full | Multiple sources:
Medical record; Lab
database | Medical record | Gold standard chart review | Nosocomial Infection Marker (NIM) program by Med Mined, Birmingham, AL. Took about 10 minutes/week to maintain. Total time for NIM: 2 hours/10,000 admissions, compared to medical record review at 1.5 full time employees per 10,000 admissions) | | | Huang, 2005
[43] | Unknown
1/1/04-
12/41/04 | Sequential | Unknown | Adverse drug
event:
specifically
hyperkalemia
on
spironolactone | 3995 pts on | e sequentially
from 1/1/04 - | Event Detector
automated event
detecting
computer program | Field Defined | Unknown | Lab database,
pharmacy database
(none others
specified) | | Chart review, not otherwise specified | Implementation of a new rule in an established automated event detection system (EventDetector) to monitor serum potassium in patients receiving spironolactone. Study encompassed 3 separate hospitals. | | | Graham, 2004 | | Halman | NIGI | Infantion | Halaana | | NYARP (New
York Antimicrobial
Resistance
Project) electronic
monitoring of
bloodstream | Field Defined | E.d. | Microbiology data for positive blood | Medical record, prospective | Other: Prospective
surveillance study
"Staff hand hygiene
and nosocomial
infections in neonates"
by infection control
professional (see | Study designed to validate NYARP data by comparing with prospective surveillance by infection control professional (independent study over the time period march 2001 - Jan 2002.) The NYARP electronically monitors trends in nosocomial infections in 14 acute care hospitals via monitoring positive blood cultures. Not validated to other institutions or patient populations. NYARP limited to bacterial infections. Relatively low cost to maintain | | | [42] | 12/02 | Unknown | NICU | Infection | Unknown | Unknown | infections | Field Defined | Full | cultures | evaluation by ICP | methods) | database. | |