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ABSTRACT
Background Health information technology
(HIT) systems have the potential to reduce
delayed, missed or incorrect diagnoses. We
describe and classify the current state of
diagnostic HIT and identify future research
directions.
Methods A multi-pronged literature search was
conducted using PubMed, Web of Science,
backwards and forwards reference searches and
contributions from domain experts. We included
HIT systems evaluated in clinical and
experimental settings as well as previous reviews,
and excluded radiology computer-aided
diagnosis, monitor alerts and alarms, and studies
focused on disease staging and prognosis.
Articles were organised within a conceptual
framework of the diagnostic process and areas
requiring further investigation were identified.
Results HIT approaches, tools and algorithms
were identified and organised into 10 categories
related to those assisting: (1) information
gathering; (2) information organisation and
display; (3) differential diagnosis generation;
(4) weighing of diagnoses; (5) generation of
diagnostic plan; (6) access to diagnostic reference
information; (7) facilitating follow-up;
(8) screening for early detection in asymptomatic
patients; (9) collaborative diagnosis; and (10)
facilitating diagnostic feedback to clinicians. We
found many studies characterising potential
interventions, but relatively few evaluating the
interventions in actual clinical settings and even
fewer demonstrating clinical impact.
Conclusions Diagnostic HIT research is still in its
early stages with few demonstrations of
measurable clinical impact. Future efforts need to
focus on: (1) improving methods and criteria for
measurement of the diagnostic process using
electronic data; (2) better usability and interfaces
in electronic health records; (3) more meaningful
incorporation of evidence-based diagnostic
protocols within clinical workflows; and (4)
systematic feedback of diagnostic performance.

INTRODUCTION
Unaided clinicians often make diagnostic
errors. Vulnerable to fallible human
memory, variable disease presentation, clin-
ical processes plagued by communication
lapses, and a series of well-documented
‘heuristics’, biases and disease-specific pit-
falls, ensuring reliable and timely diagnosis
represents a major challenge.1–3 Health
information technology (HIT) tools and
systems have the potential to enable physi-
cians to overcome—or at least minimise—
these human limitations.
Despite substantial progress during the

1970s and 1980s in modelling and simu-
lating the diagnostic process, the impact
of these systems remains limited. A his-
toric 1970 article4 predicted that, by
2000, computer-aided diagnosis would
have ‘an entirely new role in medicine,
acting as a powerful extension of the phy-
sician’s intellect’.5 Revisiting this predic-
tion in 1987, the authors conceded that it
was highly unlikely this goal would be
achieved and that ‘except in extremely
narrow clinical domains (using computers
for diagnosis) was of little or no practical
value’.5 In 1990 Miller and Masarie noted
that a fundamental issue with many of
these systems was that they were based on
a ‘Greek Oracle’ paradigm whereby clin-
ical information was provided to the com-
puter with the expectation that it will
somehow magically provide the diagno-
sis.6 They suggested that a more useful
approach would be to use computer
systems as ‘catalysts’ to enable physicians
to overcome hurdles in the diagnostic
process rather than have the system
become the diagnostician itself.
To understand and summarise how

diagnostic accuracy can be enhanced, one
needs a conceptual framework to organise
HIT tools and their potential applications
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as ‘catalysts’ to known hurdles in the diagnostic
process. Our objectives were to develop one such con-
ceptual framework based on a review of published evi-
dence and recent examples of HIT tools that have been
used to improve diagnosis and to highlight particular
areas in need of future research.

BACKGROUND
Early leaders in computer-aided diagnosis developed
statistical methods7 8 and models9 10 to serve as
underpinnings for diagnostic systems. Shortliffe and
colleagues skillfully organised these approaches into
categories including: clinical algorithms, databank
analysis, mathematical modelling of physical pro-
cesses, statistical pattern recognition, Bayesian techni-
ques, decision theory approaches and symbolic
reasoning.11 Additional summaries and categorisations
of the various possible approaches are also well-
described in other reviews.12–14 Several applications
emerged to tackle medical diagnosis in a variety of
contexts, including Present Illness Program (PIP),15

MYCIN,16 INTERNIST-1/Quick Medical Reference
(QMR),17 18 Iliad,19 DXplain20 and several others.
These pioneering efforts provided a foundation for
much of the current work on diagnostic systems.
We describe recent contributions to the field, build-

ing upon the work and context provided by prior
reviews of computerised diagnostic systems. In 1994
Miller summarised the work of diagnostic decision
support21 and suggested that focused diagnostic
systems such as those for ECG or arterial blood gas
analysis were likely to proliferate. In order for more
general diagnostic systems to succeed, he identified
key steps which included: (1) development and main-
tenance of comprehensive medical databases; (2)
better integration with HIT to avoid extensive data
entry; and (3) improved user interfaces. Three subse-
quent reviews of computerised decision support22–24

identified a relatively small number of studies of diag-
nostic systems with only a handful showing improve-
ment in clinician performance and only one
demonstrating improved patient outcomes.25

METHODS
Article selection
We initially searched for studies related to diagnostic
decision support systems and diagnosis-related HIT
published since 2000 (see search strategy in online
supplementary appendix). Because we found only
modest advances during this time, we broadened the
search to include some important work from earlier
decades, largely obtained from previous reviews of
computer-aided diagnosis.

Taxonomy development, data extraction
and categorisation
We adapted models of the diagnostic process from
Schiff et al,1 26 Croskerry27 and Klein28 to create a

model for categorising steps in the diagnostic process
addressed by HIT and similar tools (figure 1) and
linked each step with categories from the Diagnosis
Error Evaluation and Research (DEER) taxonomy
(figure 2).1 26 Based on this model, we created a con-
densed set of categories describing different steps or
aspects of diagnosis targeted by HIT tools (box 1).
During data abstraction, each study was linked to one
or more of these categories.
We developed a customised data extraction form

using Microsoft Access 2010. Following in-depth
review, we determined the following information for
each study: (1) whether the study met our inclusion
criteria; (2) clinical problem/question addressed;
(3) type of HIT system described; (4) whether it was
evaluated in a clinical setting; (5) target of the HIT
intervention/tool; (6) duration/sample size of the
study; (7) study outcomes; and (8) results.

RESULTS
We summarised the main types of diagnostic HIT tools
and mapped each type to steps in the diagnostic process
that it currently or potentially targets (figure 3). Below
we provide details of our findings in the 10 categories
of interventions.

Tools that assist in information gathering
The value of a high-quality history and physical exam-
ination is well-recognised,29–31 but time pressures and
reliance on clinician memory pose a major barrier to
their performance. Beginning in the 1960s, various
systems have been devised to assist history-taking
through computer-based patient interviewing.32–34

Interestingly, these were mainly reported before the
timeframe of our review, suggesting a loss of research
interest for unclear reasons.35 Several recent studies
have examined automated patient interviewing in spe-
cialised settings including home,36 emergency depart-
ment waiting rooms37 38 and online visits in primary
care.39 One study found that physician-acquired
history and computer-based systems each elicited
important information that the other missed,40 reaf-
firming the role of technology in complementing
rather than replacing the physician-acquired history.
To augment the clinician’s physical examination there
have been systems designed to support interpretation
of auscultation, both cardiac41–43 and pulmonary.44

The state of this research also remains underdevel-
oped with a paucity of recent or rigorous studies.

Cognition facilitation by enhanced organisation
and display of information
The increasing volume of electronically available
patient information creates significant challenges and
necessitates tools to enable efficient review of patient
information and pattern recognition. One logical direc-
tion to pursue is the graphical representation of numer-
ical data.45 One usability study found that graphical
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laboratory value displays led to reduced review times
and that graphical and tabular representations were
each more effective for answering different clinical
questions.46 However, different clinical settings may

benefit from differing data summary formats. For
example, in a neonatal ICU, automatically generated
textual summaries supported decision-making as well
as graphical representations but not as well as their

Figure 1 Model of diagnostic process with Diagnosis Error Evaluation and Research (DEER) categories of potential errors.
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human-generated counterparts.47 Overall, improved
organisation and display of data might facilitate identi-
fication of temporal patterns as well as helping to
ensure that items do not get overlooked, especially to
offset electronic health record (EHR) data hyper-
trophy,48 but the evidence base to date is quite limited.

Aids to generation of a differential diagnosis
One repeatedly demonstrated contributor to diagnos-
tic errors is the lack of a sufficiently broad differential

diagnosis.49 One suggested approach to support this
process is to provide diagnostic checklists with
common, ‘don’t miss’ or commonly missed diagnoses
for various presenting symptoms and signs.50 This
approach can be facilitated with computer-based dif-
ferential diagnosis list generators. While work in this
area has spanned decades, we focus on recent addi-
tions to the field. Four systems in current use (Isabel,
DXplain, Diagnosis Pro and PEPID) were recently
reviewed and evaluated on test cases.51 There have

Figure 2 Diagnosis Error Evaluation and Research (DEER) taxonomy.
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also been various evaluations of these systems and
earlier counterparts (eg, QMR and Iliad) including
retrospective52–58 and simulated cases53 59 60 as well
as pre–post61 and prospective62 studies. In general,
these studies—although not always rigorously per-
formed—demonstrate that the systems include the

gold standard diagnosis within the output list of up to
30 diagnoses in 70–95% of cases. Whether undiffer-
entiated lists of this length are clinically helpful
requires further evidence. One study found that using
such a system led to a similar number of diagnoses
changed from correct to incorrect as from incorrect to
correct.58

Tools and calculators to assist in weighing diagnoses
Once a differential diagnosis is generated, weighing
the likelihood of candidate diagnoses is subject to
various challenges and cognitive pitfalls.49 63 Several
of the differential diagnosis generators described
above provide rankings of their diagnostic sugges-
tions.51 64 65 Another more quantitative approach is
the use of ‘clinical prediction rules’, which are scoring
systems to calculate the likelihood of diagnoses based
on sets of clinical symptoms, signs or test results.66 67

Examples that have been recently evaluated in clinical
settings include prediction rules for pulmonary embol-
ism,68 69 deep vein thrombosis,70 paediatric appendi-
citis,71 meningitis,72–74 cervical spinal injury,75 76

intra-abdominal injury after blunt trauma77 and
osteoporosis.78

EHRs can embed algorithms into the workflow to
determine whether one condition is present or select
one diagnosis from a small predetermined set of poten-
tial candidates. Examples of such embedded algorithms
have evaluated patients for pneumonia,79 80 acute
myocardial infarction,81 postoperative infections82

Box 1 Condensed set of categories describing
different steps in diagnosis targeted by diagnostic
health information technology (HIT) tools

▸ Tools that assist in information gathering
▸ Cognition facilitation by enhanced organisation and

display of information
▸ Aids to generation of a differential diagnosis
▸ Tools and calculators to assist in weighing diagnoses
▸ Support for intelligent selection of diagnostic tests/

plan
▸ Enhanced access to diagnostic reference information

and guidelines
▸ Tools to facilitate reliable follow-up, assessment of

patient course and response
▸ Tools/alerts that support screening for early detection

of disease in asymptomatic patients
▸ Tools that facilitate diagnostic collaboration, particularly

with specialists
▸ Systems that facilitate feedback and insight into diag-

nostic performance

Figure 3 Main types of diagnostic health information technology (HIT) tools and steps in diagnosis targeted by each type.
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and, in one broad effort, to diagnose general paediatric
patients with one of 18 potential conditions.83

Although several systems showed promising results, the
acute myocardial infarction system did not impact
decision-making in the emergency department in a
pre–post evaluation,84 and we were unable to find eva-
luations of the use of the other systems in clinical care.

Support for intelligent selection of diagnostic tests/plan
Diagnostic protocols can facilitate evidenced-based
diagnostic strategies. Often they can be embedded or
integrated into various electronic tools. One well-
designed study found that a handheld diagnostic algo-
rithm of evaluation of suspected pulmonary embolism
with integrated clinical decision support improved the
appropriateness of investigations,85 and a validation
study of a chest pain protocol confirmed the safety of
referring patients with low-risk chest pain to out-
patient stress testing.86 We also found examples of
protocols without impact, including a cluster rando-
mised controlled trial of a protocol for evaluating skin
lesions using instant cameras in primary care which
failed to improve the proportion of benign lesions
excised.87

One targeted use of such algorithms and embedded
electronic clinical decision support is to use the order
entry function of EHRs to improve the appropriateness
of diagnostic tests88 89 although, when tested, it failed
to demonstrate an impact on the proportion of radi-
ology tests with positive findings or improve patient
outcomes.88 One group designed a ‘Smart Form’ for
acute respiratory illnesses to standardise and harness
clinical documentation and integrate it with diagnostic
decision support.72 Usage of the system was low, with
resulting minimal impact on diagnostic decision-
making or antibiotic prescription appropriateness.73

Enhanced access to diagnostic reference information
and guidelines
Simply providing access and time to review a medical
textbook can support a diagnostician by avoiding
exclusive reliance on memory. Various electronic
approaches and products aim to support timely access
to context-specific information, and these can be active
(requiring the user to look up information) or more
passive (information is automatically pushed to the
user). One popular approach to make relevant refer-
ence information readily available is the ‘infobutton.’90

This functionality provides context-specific links from
clinical systems to reference systems and is often
designed to anticipate clinicians’ information needs.
Infobuttons have the potential to provide diagnosis-
specific information without requiring clinicians to
exit the EHR to perform a separate search.91 However,
studies of infobuttons to date have focused mainly on
medications, with little published evidence on how
they might support the diagnostic process.92 93

Tools to facilitate reliable follow-up, assessment of patient
course and response
Patient follow-up and assessment of response over time
is often a crucial part of ensuring an accurate diagno-
sis.94 An important related issue is follow-up of test
results, especially those with long or variable turn-
around times (eg, microbiology tests, pathology results,
‘send-out’ tests). Other studies have used tools to facili-
tate longitudinal automated assessments of asthma
symptoms,95 visualise imaging for neuro-oncology
patients over time,96 and an interactive voice response
(IVR) system integrated into EHRs to provide system-
atic follow-up of walk-in clinic patients to screen for
misdiagnoses.97

To help improve the reliability of follow-up of the
high volume of test results, electronic result managers
have been created—both comprehensive systems98 99 as
well as test-specific systems such as tools related to
cancer screening or follow-up.100 101 Other approaches
target test result follow-up for specific high-risk scen-
arios such as microbiology cultures pending at the time
of discharge from the hospital102 or automatic gastro-
enterology consultations for positive faecal occult blood
tests.103 When evaluated, these systems often showed
improvements in process measures, although they have
been insufficiently powered to show impact on clinical
outcomes.

Tools/alerts that support screening for early detection
of disease in asymptomatic patients
An important aspect of timely diagnosis is early disease
detection via screening of appropriate popula-
tions,104 105 for which there is an extensive literature.106

Here we highlight illustrative examples. One approach
involves generation of unsolicited alerts informing pro-
viders of recommended or overdue screening tests.
Studies have evaluated alerts designed to screen for a
wide range of conditions including cancer,107–113 osteo-
porosis,114–116 diabetes,117 overdue vaccinations118 and
others.119–131 When studied in clinical settings, these
alerts often show statistical improvements in provider
performance. However, improvements are often surpris-
ingly modest (typically 3–15% absolute improvement in
screening rates). In addition to alerts targeting individual
providers, population management informatics tools
(eg, panel managers that list and facilitate contacting
overdue patients) have been shown to be moderately
effective in improving diagnostic screening rates.118 132

Tools to facilitate diagnostic collaboration, particularly
with specialists
Just as instantaneous access to information and refer-
ence resources is likely to improve diagnosis, timely
expert consultations can support diagnosis quality.
Driven mainly by desires to support more remote/
rural clinicians in obtaining consultations, ‘tele-
medicine’ specialty consultation systems have been
widely deployed and tested. Given the expanding
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numbers of articles, we cite excellent reviews rather
than detail individual published studies.133 134 An
entire journal is now devoted to this approach, featur-
ing uses such as tele-dermatology, tele-radiology and
tele-pathology.135 The objectives are not necessarily to
improve a specialist’s diagnosis but to achieve compar-
able accuracy for remote patients.136 ‘Store-and-
forward’ (asynchronous) and real-time consultation
technology have been reported to result in a more
timely diagnosis for patients than a conventional refer-
ral process.133 An exciting, largely untapped potential
for diagnostic support is facilitated collaboration and
coordination among different members of the care
team, including patients and their families, for facili-
tated access for concerning symptoms and collabora-
tive diagnostic decision-making.137–140

Systems that facilitate feedback and insight into
diagnostic performance
Systematic provision of feedback (immediate or longer
term) to individual providers (or organisations) repre-
sents a powerful potential for improving diagnosis.94

For generations, autopsies and/or ‘second opinions’
have been used for this purpose in selected patients.
Automating systematic feedback, despite its great
potential, is mostly non-existent, making current
medical practice largely an ‘open loop’.94 While
several examples of decision support to facilitate feed-
back of management and screening exist,141–143 we
found only one qualitative evaluation of the impact of
systematic feedback of clinician diagnostic
performance.144

DISCUSSION
The goals of this review were to provide an overview
of the current state of diagnostic HIT tools and
systems and to outline a conceptual framework that
can serve to suggest areas for further exploration. We
adapted prior models of the diagnostic process and
reviewed the published literature to create a map
showing steps of the diagnostic process targeted by
each group of tools. Through this iterative process, we
identified areas with gaps in evidence as well as
common themes to guide future work.
Overall, we found that progress in diagnostic HIT

has been slow and incremental with few significant
‘game-changing’ approaches emerging in the last
decade. While there were representative studies in
each of our 10 categories of tools, rigorous studies in
clinical settings were very infrequent. When clinical
studies were performed, benefits shown in retrospect-
ive, simulated or controlled environments have rarely
been demonstrated in actual clinical practice due in
part to well-described barriers common to decision
support systems in general.145–147 We found limited
evidence to support diagnostic protocols to guide
investigations and alerts and panel management tools
to improve performance of screening tests. However,

for the majority of the categories of HIT tools, the
evidence base was too scant to determine their utility
in clinical settings.
We believe that the field of diagnostic HIT research

can move forward by focusing on a few areas. First,
we need to develop the electronic ‘yardstick’ to
measure the accuracy of the diagnostic process.
Improved measurement will enable both targeted deci-
sion support as well as more robust and useful feed-
back to clinicians. Ideally, this needs to be done in a
way that is well-integrated into the clinical workflow
rather than requiring extensive manual data collection.
Second, we should expand collaboration with cogni-
tive science and human/computer interaction experts
to improve the structure and interfaces of EHRs.148

Design and implementation of enhancements will
need to be done thoughtfully to become useful in
everyday practice.149–151 Third, there is an urgent
need to integrate evidence-based diagnostic investiga-
tions more effectively into computerised order entry
systems. The challenge is to create diagnostic proto-
cols with enough flexibility to allow clinicians to exer-
cise their clinical judgement but to avoid unnecessary
or suboptimal diagnostic strategies as well as over-
alerting. Fourth, support for systematic feedback of
diagnostic performance is underdeveloped and war-
rants more attention. As this field evolves, evaluations
of diagnostic HIT tools should assess the strength of
the evidence behind them. We propose a five-level
hierarchy based on the model of Fryback and
Lusted152 as a way to approach such critical and
evidence-based assessments (box 2).

Box 2 Proposed levels of evidence for evaluating
diagnostic HIT tools*

Level I. Appear useful for suggesting, weighing, or in
other ways helping physicians in diagnosis-related tasks
(face validity)
Level II. Clinicians (or students) report they like and find
helpful in directing them to correct diagnosis in a more
timely, reliable, useful way (and ideally, regularly use
them).
Level III. Compared to not using these tools (ideally con-
current, or at least historical controls) physicians arrive at
the correct diagnosis more often, sooner or more safely.
Level IV. Improved outcomes in patients (ideally randomly
assigned) for whom tools are used—fewer errors, more
timely diagnosis, or more efficient or cost-efficient diag-
nostic evaluation process
Level V. Tools show both improved patient outcomes and
produce sufficiently greater marginal benefit to justify
investment resources expended (money, clinician time) on
the tools vs. other places that those resources could be
invested. (ie, ROI).
*Based on model of Fryback and Thornbury.152
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Our review has several limitations. We focused on
recent work, largely excluding studies prior to 2000.
While we reviewed a broad representation of tools
and systems, we recognise the list was not exhaustive.
Although we covered many types of interventions and
approaches, we could not cover all because of time
and space considerations and excluded various
important domains such as computer-aided diagnostic
tools for radiology studies, alarms and alerts built into
monitoring equipment and support tools targeting
patients and non-clinicians.
In conclusion, we found that the field of diagnostic

health information technology is still in its early stages
and there has been minimal development over the
past decade in various promising realms. Many
aspects of the diagnostic process have been targeted,
but few tools and systems have been shown to
improve diagnosis in actual clinical settings. We can
move the field forward by developing and testing
interventions in real-world settings using cross-
disciplinary research and systematic feedback of diag-
nostic performance.
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