Diagnosis and diagnostic errors: time for a new paradigm

Gordon D Schiff

It looks like diagnosis triggers may be gaining traction. Building on their earlier efforts,1,2 a team of investigators based in Houston reports on their latest effort to apply electronic screens—so called ‘triggers’—to large clinical databases, to identify cases of potential diagnostic errors.3 They searched nearly 300 000 patients’ records over a 12-month period at two large health systems with comprehensive electronic health records. They sought patients who had one of four ‘red flag’ findings for prostate or colon cancer—elevated prostate specific antigen (PSA), positive fecal occult blood test (FOBT), rectal bleeding (haematochezia), and iron deficiency anaemia. They then used a refined electronic algorithm to cull out patients who (1) were already known to have prostate or colorectal cancer, or (2) had evidence of appropriate follow-up testing or referral. This process left roughly 1500 patients with one of the four red flags potentially unaddressed. Thus, searching an enormous haystack of 300 000 patients, they found roughly 1500 possible ‘needles’—patients who may have had their diagnosis of colon or prostate cancer delayed or overlooked entirely.

Their next step was manual chart review. They had hoped that the yield of their electronic screen for diagnostic failures (‘positive predictive value’) might approach 35%, meaning that at least one out of every three ‘screen positive’ charts would have evidence for care improvement opportunities. Instead they were pleasantly surprised that fully 2/3 of the charts (positive predictive value of 60–70% depending on which screen for which cancer) had such opportunities, suggesting they could find an estimated 1000+ instances of delayed or missed follow-up representing an estimated 50 actual cancers each year.

The first thing that must be said is that, although the screen ‘worked well’ (to find care improvement opportunities), the outpatient systems of care obviously did not. Since there is no reason to believe their findings are not broadly representative of ambulatory care in general (and the fact that both the institutions had advanced electronic systems should, in theory, put them in a better position for reliable follow-up than those lacking such capability); the findings mean that healthcare diagnosis, as measured by this one metric at least, is a long way from six-sigma quality (defined as one defect per 3.4 million). This study’s rate translates into roughly 13 600 defects per 3.4 million patients. While one could quibble with some of the arbitrary cut-off intervals chosen for this study—a colonoscopy 61 days after a positive FOBT was failed care, whereas, one after 59 days was not; similarly with 91 vs 89 days for follow-up of an elevated PSA—the study unquestionably highlights undesirable delays that more efficient and more reliable care should be able to avoid.

The next important consideration to ponder is whether and how such retrospective ‘triggers’ can be used to minimise diagnostic errors prospectively. As we have noted previously, prospectively applying such triggers as safeguards to ‘find and fix’ actual or potential diagnostic errors and delays should be the ultimate application of such triggers.4 Thus, as impressive as the results of the current application of these cancer electronic trigger screens are, we are still working in what quality improvement practitioners call the ‘inspection’ rather than the ‘re-engineering’ or improvement mode.5 In an earlier effort to pilot electronic screens, our diagnostic error research team screened records for potentially missed elevated thyroid stimulating hormone (TSH) levels and was able to intervene and treat multiple patients with overlooked hypothyroidism.6 The prospect of prospectively intervening on the 1000 patients identified as being at risk for prostate or colorectal cancer in this retrospective study is a tantalising one, but one that awaits a different application and study.
Thinking about diagnosis errors and challenges

General concepts

Good diagnosticians get it right 1st time, most all of the time

Lore, academic model of the master/skilful diagnostician who knows/recalls everything

Diagnosis is the doctor’s job

Patients often seen as anxious, exaggerating, overly questioning, with at times unreasonable demands and expectations

Diagnosis and treatment as separate stages in patient care

Clinical practices

Order lots of tests to avoid missing diagnoses

More specialty referrals on one hand, but utilisation barriers (co-pays, prior authorisation) on the other.

Frequent empirical drug trials when uncertain of diagnosis

MD attention/efforts to ensure disease screening

Frequent empirical drug trials when uncertain of diagnosis

Order lots of tests to avoid missing diagnoses

Judicious ordering: targeted, well organised data and testing.

Appreciation of test limitations (false+,- incidental findings, risks)

More specialty referrals on one hand, but utilisation barriers (co-pays, prior authorisation) on the other.

Pull systems to lower barriers for raising questions, real-time virtual consults;

collaborative approaches to enable watch and wait strategies where appropriate

Frequent empirical drug trials when uncertain of diagnosis

Conservative use of drugs to avoid confusing clinical picture

MD attention/efforts to ensure disease screening

Automating, delegating clerical functions; teamwork, to free MD cognitive time.

Thinking about diagnosis errors and challenges

Errors infrequent; hit-and-miss hearing about errors

Errors infrequent; hit-and-miss hearing about errors

Clinicians reactions: denial, defensive, others to blame, others also making similar errors

Clinicians reactions: denial, defensive, others to blame, others also making similar errors

Dreading complex diagnostic dilemmas

Dreading complex diagnostic dilemmas

Diagnoses as distinct labels, events

Diagnoses as distinct labels, events

Documentation/communication

Documentation: time-consuming/wasting, mindless, mainly to CYA (covering your back)

Say and write as little as possible as it could be used against you in malpractice allegation

Eschew/hide uncertainty

Don’t let patient know about errors so they don’t become angry, mistrustful, or sue

Patients advised to call if not better; no news is good news (test results: ’we’ll call if anything abnormal’)

Global remedies

Knowing more medical knowledge

Attention to the ‘facts’ to objectively make diagnosis

Exhortations to have ‘high index of suspicion’ of various diagnoses

Ensuring MD is cc’d everything, thorough/voluminous notes, widespread reminders/alerts

Revisit/re-examine after 24-48 hours

Fear of malpractice to motivate MDs to be more careful and practice defensive medicine

More accountability, ’PAP’ payment incentives and punishments tied to performance metrics

More rules, requirements; target outliers for better compliance

More time with patients

Reflex changes in response to errors

Diagnosis is an inexact science, fraught with uncertainty.

Goal is to lower error rates and delays via more reliable systems and follow-up

Quality diagnosis is based on well coordinated distributed network/team of people and reliable processes. Relying less on human memory

Co-production of diagnosis between clinicians (including nurses, social workers, specialists), lab/radiology, and especially, the patient and family

Patients as key allies in making diagnosis.

Need to address understandable/legitimate fears, desires for explanations.

Use their questions to stimulate rethinking of diagnoses.

Prioritising diagnostic efforts to target treatable conditions; more integrated strategies and timing for testing and treatment

New paradigms/better ways to think about diagnosis, and diagnosis improvement

Diagnosis is as uncertain as ever, more uncertain, even harder. More system factors.

Minimum multifatigue and work overload; preventing errors from occurring.

Error system minimised; more systematically.

Patient outcomes: better care, lower stress, more engaged, more satisfied.

P4P — payment incentives and punishments. Systematic proactive feedback and follow-up. Values and outcomes.

Diagnosis is as uncertain as ever, more uncertain, even harder. More system factors.

Minimum multifatigue and work overload; preventing errors from occurring.

Error system minimised; more systematically.

Patient outcomes: better care, lower stress, more engaged, more satisfied.

P4P — payment incentives and punishments. Systematic proactive feedback and follow-up. Values and outcomes.

References:


Table 1

<table>
<thead>
<tr>
<th>Traditional ways of thinking about diagnosis, and diagnostic error</th>
<th>New paradigms/better ways to think about diagnosis, and diagnosis improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>General concepts</td>
<td>Diagnosis is an inexact science, fraught with uncertainty. Goal is to lower error rates and delays via more reliable systems and follow-up</td>
</tr>
<tr>
<td>Lore, academic model of the master/skilful diagnostician who knows/recalls everything</td>
<td>Quality diagnosis is based on well coordinated distributed network/team of people and reliable processes. Relying less on human memory</td>
</tr>
<tr>
<td>Diagnosis is the doctor’s job</td>
<td>Co-production of diagnosis between clinicians (including nurses, social workers, specialists), lab/radiology, and especially, the patient and family</td>
</tr>
<tr>
<td>Patients often seen as anxious, exaggerating, overly questioning, with at times unreasonable demands and expectations</td>
<td>Patients as key allies in making diagnosis. Need to address understandable/legitimate fears, desires for explanations. Use their questions to stimulate rethinking of diagnoses.</td>
</tr>
<tr>
<td>Diagnosis and treatment as separate stages in patient care</td>
<td>Prioritising diagnostic efforts to target treatable conditions; more integrated strategies and timing for testing and treatment</td>
</tr>
<tr>
<td>Clinical practices</td>
<td>Judicious ordering: targeted, well organised data and testing. Appreciation of test limitations (false+,- incidental findings, risks)</td>
</tr>
<tr>
<td>Order lots of tests to avoid missing diagnoses</td>
<td>Pull systems to lower barriers for raising questions, real-time virtual consults; collaborative approaches to enable watch and wait strategies where appropriate</td>
</tr>
<tr>
<td>More specialty referrals on one hand, but utilisation barriers (co-pays, prior authorisation) on the other.</td>
<td>Conservative use of drugs to avoid confusing clinical picture</td>
</tr>
<tr>
<td>Frequent empirical drug trials when uncertain of diagnosis</td>
<td>Automating, delegating clerical functions; teamwork, to free MD cognitive time.</td>
</tr>
<tr>
<td>MD attention/efforts to ensure disease screening</td>
<td>Systematic proactive feedback and follow-up. Calling/emailing to check how patient is doing; survey patient outcomes</td>
</tr>
</tbody>
</table>

Diagnosis is as uncertain as ever, more uncertain, even harder. More system factors.

Minimum multifatigue and work overload; preventing errors from occurring.

Error system minimised; more systematically.

Patient outcomes: better care, lower stress, more engaged, more satisfied.

P4P — payment incentives and punishments. Systematic proactive feedback and follow-up. Values and outcomes.

Diagnosis is as uncertain as ever, more uncertain, even harder. More system factors.

Minimum multifatigue and work overload; preventing errors from occurring.

Error system minimised; more systematically.

Patient outcomes: better care, lower stress, more engaged, more satisfied.

P4P — payment incentives and punishments. Systematic proactive feedback and follow-up. Values and outcomes.

References:

design (the authors did feed back to the provider any outstanding failed follow-up patients, but the 2-year lag in the study period precluded more ‘real time’ feedback). In addition to the logistical challenges of such massive chart reviews are challenges that application of the electronic screen would face related to the question of timing—when should the screens/triggers be run? If run too early (eg, 2 weeks after the time of documentation of a +FOBT), firing reminders or instituting interventions risks needlessly harassing physicians and patients just embarking on a work-up; if too late (eg, after 6 or 12 months) the protocol misses an opportunity for more timely diagnosis of a growing colon cancer.

While these artificially dichotomised contrasting paradigms each warrant much more evidence and discussion, they can stimulate discussion about what and how we are thinking, teaching and practicing related to medical diagnosis. We welcome the ‘needles’ Murphy et al have uncovered, and hope some of the provocative jabs offered here can serve to puncture our complacency and force us to rethink our collective approach to better diagnosis.

Competing interests None.

Provenance and peer review Commissioned; internally peer reviewed.

REFERENCES


READY, AIM, IMPROVE: NEW PARADIGMS TO TRIGGER BETTER DIAGNOSIS

Thus, we see from Murphy et al that we have widespread diagnostic errors and delays, at least for these two diagnoses, confirming a growing body of literature demonstrating suboptimal diagnosis. We also see a glimpse of ways new tools might aid in overcoming limitations of care systems and human memory and performance reliability. Over the past decade a small but growing cadre of researchers, educators, and practitioners, have begun to grapple with the millennium-old problem of medical diagnosis in new ways, informed by a larger error-prevention movement outside and within medicine. Much of this work has coalesced in a series of international conferences on Diagnostic Error in Medicine (now in their 6th year). These conferences (selected proceedings from which appeared in a recent supplement to BMJ Quality & Safety) have planted the seeds for new approaches to diagnostic error.

What will it take to jump-start new thinking, approaches and practices to help fulfill the promise of better diagnosis? Historically, efforts to improve diagnosis have been directed toward improving diagnostic technology—more and better lab and imaging tests. A parallel, potentially offsetting and challenging recent trend is changes in traditional physician–patient relationships. Patients and physicians were previously more likely to intimately know each other over time, and (according to physicians and patients at least) physicians had more time to talk to, examine, and think about their patients. Without delving into a host of important related controversies (such as, whether and how technologies are being overused, and ways to ensure they are used more cost-effectively, whether medical homes will make things better or worse), there are ways we need to begin rethinking how we approach diagnosis and diagnosis errors.

From our work with the earlier AHRQ funded Diagnostic Error Evaluation and Research (DEER) Project, and more recent opportunities to study malpractice and diagnostic errors with Harvard’s malpractice insurer, I offer a series of possibly provocative and certainly oversimplified bullets to contrast where we have come from and where we need to go (table 1).
Diagnosis and diagnostic errors: time for a new paradigm

Gordon D Schiff

*BMJ Qual Saf* 2014 23: 1-3 originally published online September 19, 2013
doi: 10.1136/bmjqs-2013-002426

Updated information and services can be found at:
http://qualitysafety.bmj.com/content/23/1/1

These include:

References
This article cites 14 articles, 5 of which you can access for free at:
http://qualitysafety.bmj.com/content/23/1/1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/