Skip to main content

Advertisement

Log in

Detection and prevention of prescriptions with excessive doses in electronic prescribing systems

  • Pharmacoepidemiology and Prescription
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Introduction

Dose dependent adverse drug reactions are often caused by prescribing errors ignoring upper dose limits. Thus, computerised physician order entry incorporating maximum recommended therapeutic doses (MRTDs) might reduce prescriptions of excessive doses. We evaluated the suitability of MRTD information as published in the Summary of Product Characteristics (SPC) (MRTDSPC) or by the US Food and Drug Administration (MRTDFDA) and the value of Defined Daily Doses (DDD, World Health Organisation) as knowledge bases for an alerting system.

Methods

In a large set of critical-dose drugs (N = 140) we compared MRTDFDA and DDD values with the corresponding German MRTDSPC. We then retrospectively assessed a set of 633 electronically prescribed drugs (EPDs) issued at a university hospital and calculated prescription rates of excessive doses.

Results

MRTDFDA was similar to MRTDSPC in 37% (N = 140), higher in 32%, and lower in 31% of drugs. On average, available DDD values (N = 129) were 1.6 times lower than MRTDSPC, with 64% being lower, 33% similar, and 3% larger than MRTDSPC. Prescription rates of excessive doses according to MRTDFDA were 2.5-fold higher (6.1%) than according to MRTDSPC (2.5%) (p < 0.01). However, only one in four EPDs categorised as overdosed according to MRTDFDA exceeded MRTDSPC, and MRTDFDA values were available only for 67% of all assessed EPDs.

Conclusion

Our study revealed a remarkable number of prescriptions with doses exceeding approved limits. Their prevention appears feasible but the choice of an appropriate database for MRTDs is essential, and differences between available information sources are large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, Farrar K, Park BK, Breckenridge AM (2004) Adverse drug reactions as cause of admission to hospital: prospective analysis of 18,820 patients. BMJ 329:15–19

    Article  PubMed  Google Scholar 

  2. van der Hooft CS, Sturkenboom MC, van Grootheest K, Kingma HJ, Stricker BH (2006) Adverse drug reaction-related hospitalisations: a nationwide study in The Netherlands. Drug Saf 29:161–168

    Article  PubMed  Google Scholar 

  3. Bates DW, Spell N, Cullen DJ, Burdick E, Laird N, Petersen LA, Small SD, Sweitzer BJ, Leape LL (1997) The costs of adverse drug events in hospitalized patients. Adverse Drug Events Prevention Study Group. JAMA 277:307–311

    Article  PubMed  CAS  Google Scholar 

  4. Gautier S, Bachelet H, Bordet R, Caron J (2003) The costs of adverse drug reactions. Expert Opin Pharmacother 4:319–326

    Article  PubMed  Google Scholar 

  5. Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279:1200–1205

    Article  PubMed  CAS  Google Scholar 

  6. Bates DW, Cullen DJ, Laird N, Petersen LA, Small SD, Servi D, Laffel G, Sweitzer BJ, Shea BF, Hallisey R et al (1995) Incidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE Prevention Study Group. JAMA 274:29–34

    Article  PubMed  CAS  Google Scholar 

  7. Bobb A, Gleason K, Husch M, Feinglass J, Yarnold PR, Noskin GA (2004) The epidemiology of prescribing errors: the potential impact of computerized prescriber order entry. Arch Intern Med 164:785–792

    Article  PubMed  Google Scholar 

  8. Kanjanarat P, Winterstein AG, Johns TE, Hatton RC, Gonzalez-Rothi R, Segal R (2003) Nature of preventable adverse drug events in hospitals: a literature review. Am J Health Syst Pharm 60:1750–1759

    PubMed  Google Scholar 

  9. Garg AX, Adhikari NK, McDonald H, Rosas-Arellano MP, Devereaux PJ, Beyene J, Sam J, Haynes RB (2005) Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA 293:1223–1238

    Article  PubMed  CAS  Google Scholar 

  10. Kuperman GJ, Bobb A, Payne TH, Avery AJ, Gandhi TK, Burns G, Classen DC, Bates DW (2007) Medication-related clinical decision support in computerized provider order entry systems: a review. J Am Med Inform Assoc 14:29–40

    Article  PubMed  Google Scholar 

  11. Teich JM, Merchia PR, Schmiz JL, Kuperman GJ, Spurr CD, Bates DW (2000) Effects of computerized physician order entry on prescribing practices. Arch Intern Med 160:2741–2747

    Article  PubMed  CAS  Google Scholar 

  12. Backman JT, Kivistö KT, Olkkola KT, Neuvonen PJ (1998) The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 54:53–58

    Article  PubMed  CAS  Google Scholar 

  13. Evans WE, Johnson JA (2001) Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu Rev Genomics Hum Genet 2:9–39

    Article  PubMed  CAS  Google Scholar 

  14. Evans WE, Relling MV (2004) Moving towards individualized medicine with pharmacogenomics. Nature 27:464–468

    Article  Google Scholar 

  15. Bartelink IH, Rademaker CM, Schobben AF, van den Anker JN (2006) Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet 45:1077–1097

    Article  PubMed  CAS  Google Scholar 

  16. Burton DG, Allen MC, Bird JL, Faragher RG (2005) Bridging the gap: ageing, pharmacokinetics and pharmacodynamics. J Pharm Pharmacol 57:671–679

    Article  PubMed  CAS  Google Scholar 

  17. Maximum recommended therapeutic dose (MRTD) database. http://www.fda.gov/cder/Offices/OPS_IO/MRTD.htm. Cited 22 May 2007

  18. Statistisches Bundesamt Deutschland. Körpermaße der Bevölkerung nach Altersgruppen. Ergebnisse der Mikrozensus-Befragung im Jahr 2005. http://www.destatis.de/basis/d/gesu/gesutab8.php. Cited 22 May 2007

  19. DIMDI. Anatomisch-Therapeutisch-Chemische (ATC) Klassifikation mit definierten Tagesdosen (DDD, Defined Daily Doses). http://www.dimdi.de/dynamic/de/klassi/downloadcenter/atcddd/version2007/atc-ddd-amtlich-2007.pdf. Cited 22 May 2007

  20. EMEA. Note for guidance on the investigation of bioavailability and bioequivalence of medicinal products. http://www.emea.europa.eu/pdfs/human/qwp/140198en.pdf. Cited 22 May 2007

  21. Joanna Briggs Institute (2006) Strategies to reduce medication errors with reference to older adults. Nurs Stand 20:53–57

    Google Scholar 

  22. Indermitte J, Beutler M, Bruppacher R, Meier CR, Hersberger KE (2007) Management of drug-interaction alerts in community pharmacies. J Clin Pharm Ther 32:133–142

    Article  PubMed  CAS  Google Scholar 

  23. Payne TH, Nichol WP, Hoey P, Savarino J (2002) Characteristics and override rates of order checks in a practitioner order entry system. Proc AMIA Annu Symp pp 602–606

  24. Weingart SN, Toth M, Sands DZ, Aronson MD, Davis RB, Phillips RS (2003) Physicians’ decisions to override computerized drug alerts in primary care. Arch Intern Med 163:2625–2631

    Article  PubMed  Google Scholar 

  25. van der Sijs H, Aarts J, Vulto A, Berg M (2006) Overriding of drug safety alerts in computerized physician order entry. J Am Med Inform Assoc 13:138–147

    Article  PubMed  Google Scholar 

  26. Falconnier AD, Haefeli WE, Schoenenberger RA, Surber C, Martin-Facklam M (2001) Drug dosage in patients with renal failure optimized by immediate concurrent feedback. J Gen Intern Med 16:369–375

    Article  PubMed  CAS  Google Scholar 

  27. Richens A, Dunlop A (1975) Serum-phenytoin levels in management of epilepsy. Lancet 2:247–248

    Article  PubMed  CAS  Google Scholar 

  28. Kopp BJ, Erstad BL, Allen ME, Theodorou AA, Priestley G (2006) Medication errors and adverse drug events in an intensive care unit: direct observation approach for detection. Crit Care Med 34:415–425

    Article  PubMed  Google Scholar 

  29. Morimoto T, Gandhi TK, Seger AC, Hsieh TC, Bates DW (2004) Adverse drug events and medication errors: detection and classification methods. Qual Saf Health Care 13:306–314

    Article  PubMed  CAS  Google Scholar 

  30. Glassman PA, Simon B, Belperio P, Lanto A (2002) Improving recognition of drug interactions. Benefits and barriers to using automated drug alerts. Med Care 40:1161–1171

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The work of H. Seidling was supported in part by the Chamber of Pharmacists Baden-Württemberg, A. Al Barmawi was supported by an unrestricted educational grant of Syria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. E. Haefeli.

Additional information

H. M. Seidling and A. Al Barmawi contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidling, H.M., Al Barmawi, A., Kaltschmidt, J. et al. Detection and prevention of prescriptions with excessive doses in electronic prescribing systems. Eur J Clin Pharmacol 63, 1185–1192 (2007). https://doi.org/10.1007/s00228-007-0370-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-007-0370-9

Keywords

Navigation