Article Text
Abstract
Background Unrecognised changes in a hospitalised patient’s clinical course may lead to a preventable adverse event. Early warning systems (EWS) use patient data, such as vital signs, nursing assessments and laboratory values, to aid in the detection of early clinical deterioration. In 2018, an EWS programme was deployed at an academic hospital that consisted of a commercially available EWS algorithm and a centralised virtual nurse team to monitor alerts. Our objective was to understand the nursing perspective on the use of an EWS programme with centralised monitoring.
Methods We conducted and audio-recorded semistructured focus groups during nurse staff meetings on six inpatient units, stratified by alert frequency (high: >100 alerts/month; medium: 50–100 alerts/month; low: <50 alerts/month). Discussion topics included EWS programme experiences, perception of EWS programme utility and EWS programme implementation. Investigators analysed the focus group transcripts using a grounded theory approach.
Results We conducted 28 focus groups with 227 bedside nurses across all shifts. We identified six principal themes: (1) Alert timeliness, nurses reported being aware of the patient’s deterioration before the EWS alert, (2) Lack of accuracy, nurses perceived most alerts as false positives, (3) Workflow interruptions caused by EWS alerts, (4) Questions of actionability of alerts, nurses were often uncertain about next steps, (5) Concerns around an underappreciation of core nursing skills via reliance on the EWS programme and (6) The opportunity cost of deploying the EWS programme.
Conclusion This qualitative study of nurses demonstrates the importance of earning user trust, ensuring timeliness and outlining actionable next steps when implementing an EWS. Careful attention to user workflow is required to maximise EWS impact on improving hospital quality and patient safety.
- hospital medicine
- information technology
- healthcare quality improvement
- nurses
- qualitative research
Data availability statement
Data are available upon reasonable request.
Statistics from Altmetric.com
Data availability statement
Data are available upon reasonable request.
Footnotes
Twitter @bradcrotty
Correction notice Jean M Holt has been updated Jeana M Holt
Contributors All authors qualify for authorship and have reviewed and approved the final manuscript. BHC is responsible for the overall content as the guarantor, accepts full responsibility for the work and/or the conduct of the study, had access to the data, and controlled the decision to publish.
Funding This study was funded by Medical College of Wisconsin and Advancing a Healthier Wisconsin Endowment.
Competing interests None declared.
Provenance and peer review Not commissioned; externally peer reviewed.
Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.