Leadership in anaesthesia teams: the most effective leadership is shared

Barbara Künzle,1 Enikő Zala-Mező,2 Johannes Wacker,3 Michaela Kolbe,1 Donat R Spahn,3 Gudela Grote1

ABSTRACT

Background Leadership plays a crucial role in teams working in complex environments, and research has shown that shared leadership where all team members perform leadership functions is an effective strategy. The authors aimed to describe shared leadership patterns during anaesthesia induction and show how they are linked to team performance.

Methods 12 anaesthesia teams consisting of one resident and one nurse during a simulated anaesthesia induction including a non-routine event (asystole) were videotaped, and two kinds of leadership behaviour (content-oriented and structuring) were coded. Team performance was operationalised as the reaction time to the non-routine event. The amount of leadership sharedness was compared between low- and high-performing teams by performing a univariate analysis of variance. Wilcoxon signed-rank tests were used to analyse the distribution of the two kinds of leadership behaviour among team members.

Results Statistical analysis revealed that in high-performing teams, residents and nurses shared their leadership, while in low-performing teams, residents showed significantly higher levels of leadership behaviour than nurses. Further analyses revealed different distributions of leadership functions among team members. While residents of low-performing teams assumed both kinds of leadership behaviour, members of high-performing teams seemed to have distinct leadership roles: nurses mainly used content-oriented leadership behaviour, and residents tended to show structuring leadership behaviour.

Conclusions The study documents the effectiveness of shared leadership in situations with high task complexity and indicates that a clear distribution of content-oriented and structuring leadership among team members is an effective strategy. The findings have implications for training in shared leadership and also give rise to a number of recommendations for further research.

ClinicalTrials (http://www.clinicaltrials.gov) registration number is NCT00706108.

BACKGROUND

Working in the operating room (OR) presents many cognitive, social and system challenges, and teamwork is an essential functional component to manage the time-pressured, critical and rapidly changing tasks.1 2 An ever-increasing number of studies acknowledge that maximising patient safety plus reducing medical errors depends not only upon technical expertise but also on how decisions are made,3–6 how relevant information is communicated and tasks are coordinated in various OR teams7 9 10–16—abilities which are all categorised as non-technical skills.17 Out of the growing emphasis on effective team coordination in the OR, a closer examination of leadership dynamics in critical care seems to be evident. This paper adopts previous research findings on shared leadership in OR teams18–25 in order to focus on shared leadership in anaesthesia teams and examine links between shared leadership behaviour and team effectiveness. Due to the extreme complexity and often large size of a typical OR team, we believe that focussing on two-person anaesthesia teams with their high technical and non-technical skill demands offers an ideal microcosm of the larger OR team that they are a part of and therefore may provide an important insight into medical critical care leadership demands and solutions.

We drew on two leadership perspectives that are particularly relevant to anaesthesia teams: (1) functional leadership and (2) shared leadership. The concept of functional leadership24 proposes that effective leaders assume specific leadership actions (eg, managing personnel and material resources) as required by the team and that leadership is fulfilled by formally as well as informally appointed leaders. Shared leadership builds on this flexibility and is defined as a ‘dynamic, interactive influence process among individuals in groups for which the objective is to lead one another to the achievement of group or organisational goals’ (p 1)25 and shows positive effects on team outcomes.26–30 Not surprisingly, shared leadership has been shown to be relevant for various OR teams.10 21 23

Our study tested two hypotheses, both dealing with the distribution of leadership among team members. As anaesthesia is characterised by high task complexity, making great demands on leadership,34 35 we focus on how a non-routine event increases task load and its consequential influence on leadership distribution. According to the above-mentioned correlation between task complexity and demands on leadership, we expected that with increased task load, a single leader might have difficulty fulfilling leadership functions due to the concurrent demands on their technical functions. Sharing leadership might therefore reduce task overload and increase team performance. We therefore propose the following hypothesis:

Hypothesis 1: High-performing teams have a higher degree of shared leadership than low-performing teams, specifically if task load is high.

In constructing the second hypothesis, we examined the functionally differentiated leadership
requirements of anaesthesia teams in the current study, consid-
ering two different leadership factors found to be relevant in
general36,37 and critical care medical teams specifically,18,20,38,39; 1. Content-oriented leadership concentrates on the un-
derstanding of the task and on actual or potential challenges.
Content-oriented leaders foster the processing of informa-
tion, offering the grist for sense-making to team members by
information search and exchange.
2. Structuring leadership is about guiding and structuring team
processes by coordinating team activities such as role
distribution and managing resources.24
Because these two leadership functions utilise different skills, it
follows that team leadership is more effective when the
appropriate style is distributed according to the respective skills
of team members.40 Since the nurses of the anaesthesia teams
we studied tended to have longer tenure within the same work
unit, we assumed that they generally had more hospital work
experience than the residents who often came directly from
university. In the investigated intubation scenario where resi-
dents were responsible for administering intubation, we
expected nurses to provide more content-oriented leadership and
residents—as formal leaders focusing on the specific task—to
perform more structuring leadership. We also expected these
distinct leadership roles to be positively related to team perfor-
mance. We proposed:

Hypothesis 2: In high-performing teams, residents take over the
structuring leadership function, whereas nurses take over the
content-oriented leadership function, especially if task load is high.

METHODS
Setting
We analysed 13 video recordings of anaesthesia teams who
volunteered to perform simulated routine anaesthesia inductions
in regular OR using a resuscitation mannequin for advanced live
support allowing arrhythmia simulation (MegaCode, Laerdal).

Anaesthesia induction is the first step in all operations requiring
general anaesthesia and was analysed because it offered the
opportunity to study anaesthesia teams with minimal interfer-
ence from others such as surgical and OR teams. To increase task
load during induction, a cardiac arrest (asystole) was simulated
in reaction to laryngoscopy as the non-routine event—defined as
an unexpected, atypical event.41 Videos and vital parameter data
were recorded using a setup allowing synchronised recording of
video, monitor and ventilator data.

Study participants
All teams consisted of one anaesthesia resident (five females,
eight males), one anaesthesia nurse (six females, seven males),
with a male on call consultant anaesthetist immediately available
if requested. Sample size was determined by availability of
staff and team members who held at least 6 months’ work
experience in anaesthesia. Team composition and role distribu-
tion represented common practice of the tertiary teaching
hospital where the study was conducted: the resident performed
intubation while assisted by the nurse. Local institutional ethics
committee approval was obtained, and participating staff gave
their written informed consent.1

Measures
Leadership behaviour
The leadership taxonomy recorded two leadership behaviour
categories: content-oriented and structuring leadership. Table 1
provides descriptions and examples of these categories. To check
for inter-rater reliability of the behaviour codings, three trained
raters independently coded a test sample of five cases out of 13.
The first coder divided the sample into coding units which were
coded by the other two. A coding unit was one uttered state-
ment, usually a phrase. A new unit started as soon as the speaker
and/or the topic changed. The occurrence of leadership behav-
ior was recorded on the basis of verbalised team interactions.
Kappa statistics revealed a very good inter-rater agreement for

<table>
<thead>
<tr>
<th>Table 1 Samples of coded videotape segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main category</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Content-oriented leadership</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
behavioural marker for start time. Team members entered the show, signifying
(mean rates per minute); a low degree meant one team member
both team members demonstrated similar amounts of leadership
levels of both team members: a high degree of sharedness meant
informal leaders exhibit leadership. Shared leadership was oper-
ationalised as the difference between the leadership behaviour
levels of both team members: a high degree of sharedness meant
both team members rating them on a scale from 1 to 10, 10 being the
highest value for high task load, and confirmed by an experi-
enced staff anaesthetist. To control for variation in length of the
three phases, raw data frequencies were transformed to rates per
minute by dividing unit frequencies within a phase by duration of
that phase (see table 2).

Performance measures
Team performance was measured as reaction time after simu-
lated asystole during laryngoscopy (direct visualisation of vocal
cords) for intubation of the trachea, an event that is infrequent
enough to be considered non-routine but which, according to the
literature, has a realistic likelihood of occurring.28–32 Applying the concept of reaction time measurement of a single
provider30 to a team, we measured the delay from the
beginning of simulated asystole until simulated reinstallation of
sinus rhythm when predefined actions consistent with ACLS
guidelines were taken (‘execution time’) where speed of correct
management was paramount to defining successful team
performance. In the case of anaesthesia staff, advanced cardiac
life support is a well-established part of their medical training,
and a response according to ACLS guidelines can reasonably
be expected from these teams. The speed of response to this
time-critical event can therefore be taken as the performance measure
for response to a non-routine, anaesthesia team event.
A box plot analysis identified one extreme outlier case (defined
as more than three times the IQR than the upper quartile) with
a reaction time of 124 s. This instance was excluded in order to
achieve statistically sound comparable team reaction times.31
The duration of execution time for the remaining 12 teams
ranged between 10 and 55 s (M=30.53; SD=13.52). A median
split of team performance was used to build two groups of
performance (above the median=high-performing teams, below
the median=low-performing teams).

Control variables
We controlled for team member anaesthesia work experience
and for shared work experience by calculating Mann–Whitney
tests. No differences were found between the low- and high-
performing teams, \(U_{\text{experience\ nurses}}=7, p=0.09, r=-0.53, \)
\(U_{\text{experience\ residents}}=17.5, p=0.94, r=-0.24 \) and \(U_{\text{shared\ working}}\)
\(\text{experience}=10, p=0.24, r=-0.38. \)

Data analysis
An extreme group analysis was applied comparing Phases 1 and
5 (low vs high task load; table 2, shaded columns). After visual
inspection of data (Stem-and-leaf plots, box plots), we
performed a logarithmic transformation to calculate a univariate
analysis of variance (ANOVA) using the GLM procedure of SPSS
used to test Hypothesis 1. To test Hypothesis 2, Wilcoxon
signed-rank tests were performed.

RESULTS
Table 2 shows the descriptions, duration and levels of task load
of the three work phases.
Hypothesis 1 proposed that high-performing teams have
a higher degree of shared leadership than low-performing teams,
especially if task load is high. Members of low-performing teams
showed almost identical amounts of leadership during low task
load indicating that leadership is shared, while residents showed
twice as much leadership than nurses during high task load
(figure 1). Univariate ANOVA revealed a significant effect of
shared leadership, \(F(1, 20)=7.14, p<0.05, \eta^2_p=0.26 \) but no
significant interaction between task load and shared leadership \(F(1, 20)=1.41, p=0.25, \eta^2_p=0.07, \) indicating that these differences
were not dependent upon task load (table 3). In high-performing
teams, nurses and residents were evenly engaged in leadership
during low- and high-task-load situations (figure 1). ANOVA
revealed no significant effect for shared leadership \(F(1, 20)=0.00,\)
\(p=0.97, \eta^2_p=0.00, \) indicating that leadership was equally distrib-
uted. The interaction between task load and shared leadership
was not significant \(F(1, 20)=0.51, p=0.49, \eta^2_p=0.05, \) suggesting that the distribution of leadership was not due to task load
(table 5). Thus, Hypothesis 2 is only partially confirmed.
Hypothesis 2 proposed that in high-performing teams, resi-
dents take over the structuring leadership function, whereas
nurses take over the content-oriented leadership function during

Table 2 Phases of simulated induction to general anaesthesia and respective level of task load

<table>
<thead>
<tr>
<th>Phase 1 Preparation</th>
<th>Phase 2 Preintubation</th>
<th>Phase 3 Intubation including non-routine event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main tasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation of material and equipment</td>
<td>Administrations of drugs</td>
<td>Induction of endotracheal tube into trachea using laryngoscopy. Asystole is simulated.</td>
</tr>
<tr>
<td>Team members enter the operating room</td>
<td>Decision to start medication is made or the first drug is given before the decision to start intubation is made</td>
<td>Decision to intubation is made</td>
</tr>
<tr>
<td>Before decision to start medication is made, or if no decision is made, before the first drug is given</td>
<td>After the tube is fixed</td>
<td></td>
</tr>
<tr>
<td>Mean duration in minutes</td>
<td>7.11</td>
<td>5.77</td>
</tr>
<tr>
<td>Mean ratings of task load</td>
<td>3.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Level of task load</td>
<td>Low</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

high task load. Results showed that nurses in high-performing teams demonstrated more content-oriented leadership behaviour compared with residents, $z=-0.754$, $p=0.46$, $r=-0.45$, while residents showed more structuring leadership than nurses, $z=-1.485$, $p=0.14$, $r=-0.21$, indicating distinct leadership roles, but these differences were not significant (figure 1). In low-performing teams, residents showed more content-oriented leadership than nurses, $z=0.00$, $p=1$, $r=0$ as well as significantly more structuring leadership, $z=-2.025$, $p=0.04$, $r=-0.58$, indicating that no distinct leadership roles exist (figure 1). Thus, Hypothesis 2 is only partially supported.

DISCUSSION

This study investigated leadership in anaesthesia teams operating in a simulated setting. The results provide some evidence for the appropriateness of sharing leadership in situations with high task load induced by a non-routine event, especially regarding the advantages of distributing leadership style according to skill set rather than formal leadership ranking. This is in line with other studies outside healthcare suggesting that shared leadership is especially effective if interdependency and task complexity are high. It is interesting to note, however, that those findings differ from results on leadership in other critical care teams, suggesting that the senior leader is more likely to assume the active leadership the more urgent the situation. These differences, however, are conceivably due to the different team structures observed. While our study observed anaesthesia teams consisting of one nurse and one resident, the teams investigated by the other authors involved diver members of various professional groups.

The distribution of the leadership functions in our study showed that members of high-performing teams seem to utilise distinct leadership styles, especially in high-task-load situations. One could explain this by their respective functional responsibilities: residents intubated the patient and are consequently highly focused, making it necessary to directly guide and coordinate team activities. Due to their physical perspective, nurses have a comprehensive view of circumstances and are more likely to provide residents with task-relevant information. As residents of high-performing teams were more willing to share leadership functions with the nurses, this indicates that these residents acknowledge and can accept the medical know-how of nurses, who usually have more experience in clinical settings and, due to their tenure in that particular hospital, more knowledge of the resources available. Members of low-performing teams did not distribute the two leadership functions clearly among each other, conceivably indicating that residents were overloaded by trying to perform both technical and non-technical functions, while high-performing teams seem to take advantage of individual member strengths and transfer leadership functions accordingly among team members.

Our study also shows that team performance was influenced by strengths in non-technical skills, as differences in sharedness of leadership partly explain the performance of anaesthesia teams. This is in line with the increasing number of studies generally stressing the link between various non-technical skills and performance in OR teams. Although the link is far from definitive in our study, results indicate that the utilisation of shared leadership is effective when a non-routine event occurs and that high-performing teams distribute leadership according to skill sets. In accordance with others, we emphasise the need for training in non-technical skills in order to maximise patient safety by being better able to manage OR challenges within this time-pressed, critical environment.

Table 3 Results of univariate ANOVA for leadership distribution in low- and high-performing teams

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of squares</th>
<th>df</th>
<th>F</th>
<th>p Value</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-performing teams†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task load (T)</td>
<td>1.25</td>
<td>1</td>
<td>58.57***</td>
<td>0.000</td>
<td>0.745</td>
</tr>
<tr>
<td>Shared leadership (D)</td>
<td>0.15</td>
<td>1</td>
<td>7.14*</td>
<td>0.015</td>
<td>0.263</td>
</tr>
<tr>
<td>T×D</td>
<td>0.03</td>
<td>1</td>
<td>1.41</td>
<td>0.248</td>
<td>0.066</td>
</tr>
<tr>
<td>Error</td>
<td>0.43</td>
<td>20</td>
<td>(0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-performing teams†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task load (T)</td>
<td>1.21</td>
<td>1</td>
<td>11.26***</td>
<td>0.003</td>
<td>0.360</td>
</tr>
<tr>
<td>Shared leadership (D)</td>
<td>0.00</td>
<td>1</td>
<td>0.00</td>
<td>0.971</td>
<td>0.000</td>
</tr>
<tr>
<td>T×D</td>
<td>0.05</td>
<td>1</td>
<td>0.51</td>
<td>0.485</td>
<td>0.025</td>
</tr>
<tr>
<td>Error</td>
<td>2.14</td>
<td>20</td>
<td>(0.11)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values shown in parentheses represent mean square errors.

*p<0.05; **p<0.01; ***p<0.001.

†n=12 (6 nurses, 6 residents).
Limitations, implications for further research and practice

A limitation of this study is that results are those of tandem teams in a simulated anaesthesia induction setting. We would therefore recommend broadening research on effective leadership strategies, particularly on shared leadership for anaesthesia and other medical teams. More research is needed to confirm whether the effectiveness of sharing leadership in high-task-load situations is a stable finding and also representative for other OR teams. In this study, team composition remained static during the whole task due to the simulated setting. Studies of anaesthesia teams would benefit from observing live settings where additional team members often join the team, most likely redistributing the leadership structure, which were observed to be positively related to team performance.\(^1^8\)

We conclude that shared leadership within anaesthesia teams seems to facilitate performance in complex tasks given that no individual team member possesses all resources necessary to address all task demands and therefore appears to be an effective strategy to overcome resource shortcomings—especially if task complexity is high. As complexity increases where an individual leader has difficulties completing all necessary leadership functions, distributing roles according to skill sets means that anaesthesia teams could handle non-routine events more effectively. Sharing leadership releases formal leaders from the pressure of being the singular source of influence by increasing the team’s sources of effective leadership.

Funding
This work was supported by the ETH Research Grant TH -10/05-1, Switzerland.

Competing interests
None.

Ethics approval
Ethics approval was provided by the institutional ethics committee, Gesundheitsdirektion Kanton Zurich, Ethik-Kommission (KEK), Zurich, Switzerland.

Contributors
Note: the current study involves a reanalysis of the data presented by BK, EZ-M, MK, JW and GG.\(^5^5\)

Provenance and peer review
Not commissioned; externally peer reviewed.

REFERENCES

