Incorporating evidence review into quality improvement: meeting the needs of innovators

Margie Sherwood Danz,1,2 Susanne Hempel,1 Yee-Wei Lim,1,3 Roberta Shanman,1 Aneesa Motala,1 Susan Stockdale,2 Paul Shekelle,1,2 Lisa Rubenstein1,2

ABSTRACT
Background Achieving quality improvement (QI) aims often requires local innovation. Without objective evidence review, innovators may miss previously tested approaches, rely on biased information, or use personal preferences in designing and implementing local QI programmes.

Aim To develop a practical, responsive approach to evidence review for QI innovations aimed at both achieving the goals of the Patient Centered Medical Home (PCMH) and developing an evidence-based QI culture.

Design Descriptive organisational case report.

Methods As part of a QI initiative to develop and spread innovations for achieving the Veterans Affairs (VA) PCMH (termed Patient Aligned Care Team, or PACT), we involved a professional evidence review team (consisting of review experts, an experienced librarian, and administrative support) in responding to the evidence needs of front-line primary care innovators. The review team developed a systematic approach to responsive innovation evidence review (RIER) that focused on innovator needs in terms of time frame, type of evidence and method of communicating results. To assess uptake and usefulness of the RIERs, and to learn how the content and process could be improved, we surveyed innovation leaders.

Results In the first 16 months of the QI initiative, we produced 13 RIERs on a variety of topics. These were presented as 6–15-page summaries and as slides at a QI collaborative. The RIERs focused on innovator needs (eg, topic overviews, how innovations are carried out, or contextual factors relevant to implementation). All 17 innovators who responded to the survey had read at least one RIER; 50% rated the reviews as very useful and 31%, as probably useful.

Conclusions These responsive evidence reviews appear to be a promising approach to integrating evidence review into QI processes.

INTRODUCTION
Context-responsive local innovation is often required for achieving successful organisational and provider behaviour change. Such innovation can provide the tools and locally appropriate policies and procedures that enable national policies or guidelines to succeed. However, these QI innovation efforts, typically carried out through quality improvement (QI) initiatives, are often expensive and may not be successful.1 2 Access to relevant prior evidence could potentially improve QI effectiveness and success. There is little documentation, however, showing that systematic approaches to assessing prior evidence are routinely integrated into QI efforts.3-5 One reason may be a mismatch between traditional evidence reviews and QI innovator needs.

Traditional evidence reviews, such as those published in journals, often do not meet the specific needs of, and consequently may be underused by, QI innovators. Undertaking new reviews of this type is expensive and time-consuming; and use of existing reviews is limited by their goals. Traditional evidence reviews are primarily directed at establishing whether an innovation is effective. The yes/maybe/no answers provided by these reviews are extremely useful for a wide variety of purposes, such as policy making, guideline development, and large-scale organisational decision making. These reviews, however, include few of the intervention, evaluation, or contextual details needed by local QI teams (who generally work within established organisation guidelines and policy) to determine whether and how to apply the interventions to their own situations. Some teams are at the
earliest stages of project conception and require a topic overview, while others may have a specific area of uncertainty for a project they have been working on for some time. Additionally, even if relevant reviews are available, innovation teams may lack the resources and expertise to find or assess them. Teams may have little prior experience with using evidence review, formulating QI questions, planning and implementing multidisciplinary interventions and evaluating outcomes. Finally, the limited duration typical of QI projects demands a more rapid review result than can be achieved using traditional evidence review methods. The Responsive Innovation Evidence Review (RIER) project aims to provide a reasonably objective and rapid approach to evidence review to help innovators access evidence that is relevant and tailored to their needs.

The use of rapid reviews in healthcare is increasing and audiences for these reviews are diverse. They include policy makers, healthcare providers and managers, and patients and their representative organisations; all of whom desire evidence-based recommendations on emerging issues provided in a timely manner. Methods for rapid review are evolving and are not yet standardised. One approach being used to support policy makers involves the use of a database of policy-relevant systematic reviews with or without additional services. Rapid reviews may limit literature searches by years, databases, or language; and may use sources beyond electronic searches. Rapid reviews also frequently emphasise user-friendliness and end-user focus. Although brief reports have been found to be a useful component of a health technology assessment programme, there is no agreement as to the impact of the strategies used to expedite evidence reviews on quality and risk of bias. Additionally, few rapid review efforts have sought to address the unique needs of local QI innovators directly. The RIER project adds to the evolving literature on rapid review methods by emphasising the specific needs of QI innovators.

This paper describes the process and tools used to introduce responsive evidence review into innovation projects; discusses the approaches considered and the search strategies used; and reports on a survey of innovation team members regarding uptake and usefulness of the evidence review programme with suggestions for improvement. Our evaluation questions are: (1) are review results perceived as useful by QI innovators? and (2) does the new rapid review approach show promise as a feasible method for delivering timely and relevant reviews?

METHODS
Project
The RIER project is a component of the Veterans Affairs (VA) VAIL-PACT initiative. PACT (Patient Aligned Care Team) represents the VA effort to implement the Patient Centered Medical Home (PCMH). VAIL (VISN 22 Veterans Assessment and Improvement Laboratory) is a large VA research/clinical effort in the Southern California region that aims to promote evidence-based QI innovation and to develop an evidence-based QI primary care culture. VAIL involves (1) six primary care QI demonstration practices in three different VA medical systems and (2) four interdisciplinary, cross-site workgroups on specific topics (eg, homelessness). Each demonstration practice is overseen by an interdisciplinary quality council that reviews and monitors local QI efforts. A regional steering committee prioritises innovations submitted by quality councils or workgroups.

Evidence review workgroup
The Evidence Review Workgroup was created to explore and test a way of introducing evidence review into ongoing and future innovation projects that are part of the VAIL-PACT project. The workgroup includes Southern California Evidence-based Practice Center (EPC) and VA researchers, the EPC reference librarian, and the EPC project assistant. The Southern California EPC is part of the EPC Program established by the Agency for Healthcare Research and Quality (AHRQ) to produce the AHRQ Evidence Reports.

Innovator–evidence review workgroup interaction
To help focus and formulate the evidence review requests, the Evidence Review Workgroup developed a request form (see online supplementary appendix A). The request form has undergone several revisions over time to maximise its effectiveness in practice. The current version requires the innovation teams to specify which problem, area of concern, or outcome measure the team aims to improve. The form also asks teams to formulate specific questions they want to have answered. Finally, the form requires the team to specify which innovations are being considered.

Often, innovation teams have already identified a particular area or intervention category, or are limited by system constraints. In some cases, this narrows the list of possible QI interventions reviewed. In other cases, based on clinical judgment, Evidence Review Workgroup staff may determine it is necessary to broaden the review beyond the identified interventions.

Search strategy
The overviews employ a number of search strategies selected for their effectiveness in identifying relevant information. The approach and features that are now in RIERs were developed over the course of the project. Searches are performed by the EPC reference librarian, and studies are typically selected by one reviewer; data are abstracted by a graduate student and checked by an EPC systematic reviewer; and the literature flow is managed by the EPC project assistant.
Every RIER includes a search for systematic reviews on the topic of interest. For this, we use the Systematic Review Clinical Query function in the PubMed database. We also search the Database of Abstracts of Reviews of Effects (DARE) which covers published systematic reviews, Cochrane reviews and AHRQ Technology Assessment (TA) reports. If exploratory searches reveal key articles, we use these as seed articles for additional searches. For this, we employ the PubMed Related Citations function for automated relevance ranking, and we conduct Forward Searches in the Web of Science by identifying articles relevant for the development of PCMH search filters. We used it as the basis for developing search strings for the PubMed, reference standard and iteratively tested medical home-based QI innovations. We used it as the basis for developing search strings for the PubMed, CINAHL and EMBASE databases are presented in box 1.

Since innovators are often interested in research information stemming from comparable systems, we may restrict searches to the VA setting using the author affiliation field coding in PubMed. Additionally, we use a PCMH search filter that includes a search for previously published PCMH models. We, therefore, developed a PCMH search filter using an article set maintained by the VAIL-PACT project. This article set contains publications considered relevant for the development of medical home-based QI innovations. We used it as the reference standard and iteratively tested and improved the filter. The PCMH search strings for the PubMed, CINAHL and EMBASE databases are presented in box 1.

<table>
<thead>
<tr>
<th>Box 1</th>
<th>PCMH Search filter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Database PubMed:</td>
</tr>
<tr>
<td></td>
<td>“patient centered medical home” OR “patient centered medical homes” OR “medical home” OR “medical homes” OR “advanced medical home” OR “advanced medical homes” OR “patient-aligned care team” OR “patient aligned care team” OR “patient-aligned care teams” OR “patient aligned care teams” OR pcmh NOT letter[pt] OR editorial[pt] OR editorial* OR letter*</td>
</tr>
<tr>
<td></td>
<td>Database CINAHL:</td>
</tr>
<tr>
<td></td>
<td>“patient centered medical home” OR “patient centered medical homes” OR “medical home” OR “medical homes” OR “advanced medical home” OR “advanced medical homes” OR “patient-aligned care team” OR “patient aligned care team” OR “patient-aligned care teams” OR “patient aligned care teams” OR pcmh NOT letter[pt] OR editorial[pt]</td>
</tr>
<tr>
<td></td>
<td>Search modes—Phrase Searching (Boolean)</td>
</tr>
<tr>
<td></td>
<td>Database EMBASE:</td>
</tr>
<tr>
<td></td>
<td>“patient centered medical home” OR “patient centered medical homes” OR “medical home” OR “medical homes” OR “advanced medical home” OR “advanced medical homes” OR “patient-aligned care team” OR “patient aligned care team” OR “patient-aligned care teams” OR “patient aligned care teams” OR pcmh</td>
</tr>
</tbody>
</table>

To identify the ‘How to’ information for design and implementation of the innovations, we employ Google searches, consult content experts, or identify resources referenced in research publications (reference mining).

In deciding which articles or ‘How to’ sources to include in the evidence overviews, we typically use the following priority criteria: (1) systematic reviews on relevant topics, (2) articles published by established content experts in peer-reviewed journals and (3) manuals and tools found on websites created by recognised organisations conducting relevant QI studies.

Format for RIERs overviews
RIERs use a standard format aimed at enabling a diverse innovator group to access and interpret the information. Overviews include the review questions or objectives, the methods employed to answer the questions, the results of the review, the references cited, and an evidence table summarising the key articles. The use of evidence tables is an established method in systematic reviews to enable comprehensive literature overviews. The RIERs provide sufficient detailed information to allow innovators to obtain more details if desired. The three primary components of the overviews are: (1) an effectiveness assessment of the likelihood that the general approach proposed for the innovation could result in the desired outcomes; (2) ‘how to’ information on designing and implementing the innovations with access to online sources; (3) a summary of key articles in an evidence table. The focus and scope of the reviews determines the weight given to each of the components.

Dissemination
To introduce the evidence review programme, we presented 11 RIERs orally at a project collaborative (a meeting of leaders from the quality councils, workgroups and innovation teams) at which progress for each innovation project was presented. The pertinent evidence overviews were presented together with the progress reports. Written copies of the RIERs were also available. Later, RIERs were emailed or distributed in written form, and all RIERs were placed on a SharePoint site available to members of the quality councils, workgroups and innovation teams.

Evaluation survey
To test the response of members of the quality councils, workgroups and innovation teams to the evidence overviews, we conducted an online survey. The survey asked respondents to assess and comment on the usefulness of RIERs and on how both the content and the process of obtaining the RIERS could be improved. The survey was anonymous and was designed to capture participant experiences over the first 16 months of the programme.
RESULTS
Evidence reviews
In the first 16 months of the project, the team provided 13 RIERs covering the following topics: Advanced Access, Homelessness, Interactive Communication, Motivational Interviewing, PCMH Evaluation Measures, Patient Registries, PCMH and Mental Health, Pharmacists, Primary Care Team Functioning, Readmissions, Relational Coordination, Secure Messaging, and Self-Management (table 1).

All but two of the topics were selected based on innovation projects already approved by the VAIL Steering Committee and at various stages of planning, implementation and evaluation at the time the RIERs were initiated. The reviews varied based on the goals and questions of those requesting the reviews. Some of the reviews were primarily topic overviews, some were ‘how to’ reviews, and some addressed specific items. For example, the Homelessness review focused on homelessness only in the context of the PCMH for which the literature available was very limited.

The 11 reviews presented at the collaborative were initiated to support innovation projects, introduce the evidence review resource to the innovation teams, and encourage development of an evidence-based QI culture among the team members. These reviews were requested by the VAIL leadership based on discussions with the innovation teams, quality councils and workgroups. The quality councils oversee innovation activities within the participating demonstration sites and are composed primarily of clinicians with patient care and/or administrative responsibilities; workgroups include members from one or more demonstration sites and are generally composed of both clinicians with direct patient care responsibilities and academic researchers. The other two topics were requested directly by innovators after the collaborative meeting. Reviews were produced in 2–6 weeks depending on the project timeframe and requirements.

RIERs ranged in length from six to 15 pages with a mean of nine pages. The text was purposefully kept short with about 1000 words per topic (500–2100 words, mean 1171). The number of citations varied between three and 60 (mean 16, median 11) according to the review questions and purpose. Evidence tables described 3–31 key articles (mean 11 articles, median eight). Citations and key articles were included to provide sources that the innovation team members could refer to for additional information or guidance. In some reviews, citations and key articles were also used to illustrate the conclusions. We included systematic reviews where possible. For example, in the Self-Management review with six items in the evidence table, one article was a review of 83 reviews and meta-analyses; another, a review of 30 Cochrane systematic reviews; a third, a Cochrane review of 17 studies; and a fourth, a Cochrane review of 14 studies.

Two examples of RIERs are shown in online supplementary appendix B. The evidence review on Advanced Access was requested by the VAIL leadership to support a VISN system redesign project. The objective of the review was to provide an overview for innovators on what is being done and to generate ideas for new interventions. The evidence review on Interactive Communication was requested by the Primary Care/Mental Health Provider Communication Workgroup to provide information on effective and efficient ways of enhancing two-way communication between mental health and primary care providers and on the associated barriers and facilitators. The workgroup itself had 11 members—nine clinicians, two of whom had research experience, and two academic researchers. The clinicians consisted of primary care physicians, psychiatrists, nurse practitioners and a nurse manager. The workgroup also had an advisory group consisting of one primary care physician, three clinical social workers, and one researcher. The workgroup received additional input from the Sepulveda Primary Care/Mental Health Integration Workgroup.

Evaluation survey
Respondents
Seventeen out of 28 invited innovators (61%) responded to the rapid review survey. Seventy-five per cent of respondents were members of the site-specific management teams (quality councils), 31% were members of the functionally based workgroups, and 50% were members of individual innovation teams. At the time the RIERs were first introduced, 63% of respondents were involved with innovations in the implementation stage; 31% in the planning stage; only 6% in the evaluation stage; and no respondent was working on spread or dissemination of an innovation.

Over 80% of respondents had some experience with performing literature or information searches to support project planning or activities: of these, 71% had used PubMed or other academic databases, and 57% had performed Google or other internet searches. Close to 60% of respondents had requested or received help with literature reviews from project staff prior to the creation of the Evidence Review Workgroup.

Uptake
Most (88%) of the respondents were present for the RIER presentations at the project collaborative meeting when they were first introduced; and all respondents had read at least one of the write-ups. About 24% indicated that they had requested a rapid review following the May 2011 meeting. In all, 53% of respondents indicated that they would request a rapid review from the Evidence Review Workgroup in the future.

Satisfaction
Overall, 50% of respondents rated the RIERs as very useful, and 31% as probably useful. About 50% of
Table 1 Description of responsive innovation evidence reviews (RIERs)

<table>
<thead>
<tr>
<th>RIER</th>
<th>Project (Innovation team)</th>
<th>Number of pages (text word count)</th>
<th>Questions/topics addressed</th>
<th>Number of citations</th>
<th>Articles in evidence table</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ What is advanced access? ▶ What is the evidence that advanced access works? ▶ Resources for advanced access implementation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Elements of programmes directed toward the homeless ▶ Evidence of outcomes ▶ Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced access</td>
<td>VISN system redesign open access project (VAIL leadership)</td>
<td>9 (1390)</td>
<td>▶ What are some effective and efficient evidence-based strategies to allow for two-way communication between primary care and mental health? ▶ What are the known barriers and facilitators of communication among primary care and mental health providers?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Evaluation measures used in PCMH interventions ▶ Use of registries ▶ Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homelessness</td>
<td>Home telehealth and vet-to-vet in HUD-VASH (VA supportive housing (VAIL homelessness workgroup, supporting access to primary care for homeless veterans)</td>
<td>6 (961)</td>
<td>▶ Is there an abbreviated method for training providers in this technique? ▶ What are the essential elements necessary to successfully motivate a patient? ▶ What is the time commitment needed to motivate individuals to change their behaviour using this technique? ▶ Are there any gender differences requiring modifying intervention and/or affecting outcomes? ▶ Costs of the intervention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interactive communication</td>
<td>Mental health integration into primary care PACT (primary care/mental health provider communication workgroup)</td>
<td>15 (1159)</td>
<td>▶ How do we measure team functioning? ▶ What do we know about team effectiveness within primary care? ▶ An example of care team assessment within the VA ▶ How can team development be assessed? ▶ Examples of questions from various care team functioning instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Evaluation measures used in PCMH interventions ▶ Use of registries ▶ Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motivational interviewing</td>
<td>Informing project selection, no project resulted from the topic (VAIL affiliated staff)</td>
<td>13 (2057)</td>
<td>▶ Prescription refills ▶ The bigger picture: medication therapy management ▶ Role of the pharmacist in primary care ▶ Summary ▶ Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Use of registries ▶ Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCMH evaluation measures</td>
<td>VAIL project evaluation (VAIL evaluation team)</td>
<td>6 (504)</td>
<td>▶ Use of registries ▶ Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient registries</td>
<td>RN disease managers role in PACT (Oceanside quality council)</td>
<td>7 (925)</td>
<td>▶ Use of registries ▶ Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Mental health and primary care integration—A spectrum of models ▶ Situation in the VA ▶ Other resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCMH and mental health</td>
<td>Mental health integration into primary care PACT (Sepulveda ambulatory care clinic quality council)</td>
<td>8 (1125)</td>
<td>▶ Use of registries ▶ Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacists</td>
<td>Reducing walk-in visits for pharmacy refills (sepulveda ambulatory care clinic quality council)</td>
<td>10 (2094)</td>
<td>▶ Use of registries ▶ Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Prescription refills ▶ The bigger picture: medication therapy management ▶ Role of the pharmacist in primary care ▶ Summary ▶ Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary care team functioning</td>
<td>Team based communication mini-TEX (teamlet evaluation exercise) (VAIL education workgroup)</td>
<td>8 (1409)</td>
<td>▶ Use of registries ▶ Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Prescription refills ▶ The bigger picture: medication therapy management ▶ Role of the pharmacist in primary care ▶ Summary ▶ Resources</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued...
<table>
<thead>
<tr>
<th>RIER</th>
<th>Project (Innovation team)</th>
<th>Number of pages (text word count)</th>
<th>Questions/topics addressed</th>
<th>Number of citations</th>
<th>Articles in evidence table</th>
</tr>
</thead>
</table>
| Readmissions | PACT posthospitalisation telephone intervention (Redlands Boulevard outpatient clinic quality council) | 9 (697) | ▶ Readmission reduction strategies
▶ Readmission rate as an outcome—Some concerns
▶ Elements of a readmission reduction intervention | 11 | 11 |
| Relational coordination | Team based communication Mini-TEX (teamlet evaluation exercise) (VAIL education workgroup) | 10 (578) | ▶ What is relational coordination?
▶ Measuring and analysing relational coordination
▶ Relational coordination and primary care
▶ Resources | 13 | 11 |
| Secure messaging | Point-of-care enrolment of veterans in MyHealtheVet (VA online personal health record) (redlands boulevard outpatient clinic quality council) | 7 (960) | ▶ Secure messaging
▶ Patients using secure messaging
▶ Evidence for outcomes
▶ Implementation challenges
▶ Resources | 9 | 9 |
| Self-management | RN disease managers role in PACT (Oceanside quality council) | 8 (1370) | ▶ Does self-management support work?
▶ Twelve evidence-based principles for self-management support implementation in primary care
▶ Implications for PACT | 7 | 6 |

Note: Excluding search terms, tables, figures, references.

Note: VISN (Veterans Integrated Service Network); VAIL (Veterans Assessment and Improvement Laboratory); PACT (Patient Aligned Care Team); HUD-VASH (US Dept. of Housing and Urban Affairs—VA Supportive Housing). PCMH (Patient Centered Medical Home); VA (Veterans Affairs); RN (registered nurse). The abbreviation TEX is already in the text of the line where it is found and stands for (teamlet evaluation exercise).
respondents thought the RIERs were very useful in helping them to think more clearly and broadly about their areas of concern, and 44% of respondents stated that they were very helpful in helping them to identify next steps in the innovation process. Finally, 56% thought the RIERs were helping them to gain confidence in how the innovation project fits into established evidence from the literature. Examples of the qualitative comments regarding the RIERs are shown in box 2.

Although respondents were generally positive about the content of the reviews, 26% indicated that they did not know how the process of requesting and receiving evidence overviews worked or felt it was not working very well. The only negative comments that we received stated that the process of requesting the reviews was confusing.

Suggestions for improvement
The respondents had a number of suggestions for improving the rapid review process. Most respondents felt that they would like to have more contact with the Evidence Review Workgroup staff to discuss the problem (87%) before the RIER is started. A substantial number would like to have contact both during the RIER production process (67%) and after the RIER is completed (60%). Examples of improvement suggestions are shown in box 3. Several respondents indicated that reminders about the service would be helpful since the resource may be forgotten in the day-to-day activities of clinical practice and working on the project.

DISCUSSION
Currently, routine local QI methods do not emphasise the integration of systematic evidence review and innovation design and evaluation. Efforts to bring evidence into practice, however, could be strengthened and magnified if evidence reviews were used by local QI teams. Additionally, the success of the QI projects themselves might be enhanced. We propose that further efforts to tailor evidence review approaches to the needs and constraints of QI innovators are needed. This paper reports on our ongoing efforts to develop such an approach to enable innovators to effectively use available information to guide innovation activities.

Preliminary results, based on experience with 13 RIERs, produced during the project’s first 16 months, appear promising in terms of both user acceptability and the time frame within which the reviews were generated. Our innovator survey revealed that all respondents had read at least one of the RIERs. Fifty per cent rated the RIERs as very useful, and 31% as probably useful. Innovator process improvement comments focused on requests for more interaction with the Evidence Review Workgroup, suggesting that future efforts should explore how to facilitate this type of communication. The review team also met its goal of generating each review in a 1–2-month time frame.

The RIER approach also appears promising in terms of the strategy used to provide relevant and timely information while minimising bias. Our strategy first involves a search for systematic reviews, and then uses key seed articles to identify additional articles looking backward and forward in time. By using terms such as ‘VA’, and predeveloped search strategies such as ‘PCMH’, we can maximise the proportion of

Box 2 Satisfaction with the service

- I was very impressed by the scope of the reviews and the excellent summaries
- I think the presentations and summaries are fine. I would like to start using them during the planning stage because I really think they could be helpful in further developing our innovations.
- The evidence review is good already. I didn’t fully understand what they provided until I saw the product at the May 2011 VAIL Collaborative in Costa Mesa. Now that I see what they do, I am more inclined to communicate with them and bounce ideas back and forth starting in the beginning phases of an innovation.
- The rapid reviews are very helpful. The ability to request a rapid literature review is an important asset in expediting project or programme development.
- Thank you for this wonderful resource. We will try to use it more effectively

Box 3 Example suggestions for improvement

- It would be helpful to have a conversation with a VAIL Researcher prior to putting in a request to ensure that the review request is narrowly and adequately focused.
- Speak with the people developing the innovation and ask them what they are struggling with. As projects develop, it would be nice to have direct contact with the Evidence Review Workgroup, since other issues (especially related to evaluation) come up.
- Have the innovation team talk directly to those conducting the rapid review in order to get a sense of context for the overall innovation project. It would eliminate time wasted researching areas that are not within the scope of the innovation.
- Require the requestors to narrow the focus of the request and articulate clearly what they desire to know. Provide a mechanism for communication between the requestors and those conducting the review.
articles with relevant contextual information in the search results. The RIER approach may provide a useful foundation for additional investigation and methodological development.

As the programme evolved, we found there was a need to support the innovators in formulating review questions and deciding what kind of information would be most useful to obtain. We addressed this by developing a RIER request form. The RIER request form helps to focus the scope of the review and facilitate interaction between the review group and the innovators to ensure that the review meets innovator needs. In providing evidence summaries for regional managers and stakeholders, one study\(^9\) reported on an approach that also required collaborative development of a clear and effective research question and proposal.

Support for QI requires information about advances in evidence-based medicine as well as information about how to implement advances in routine practice.\(^18\)\(^19\) Traditional reviews typically emphasise the former. We found that the implementation information often desired by members of the innovation teams belongs to the latter. Frequently sought information included (1) whether an innovation had been implemented in a similar context;\(^20\) (2) how much designing and implementing the innovation would cost and (3) exactly how the innovation was carried out. Although the Standards for Quality Improvement Reporting Excellence (SQUIRE) reporting guidelines recommend including enough information about an intervention that it can be reproduced,\(^21\) most journal articles do not include or reference this type of information. We, therefore, searched resources such as Google Scholar and other relevant web sites to identify manuals, tools and other information from tested innovations that we identified in our searches. Links to these types of information are included in the reviews. Since innovators often need to extrapolate design and implementation strategies from one context to another, we facilitated contact with content experts by including relevant links in the reviews.\(^10\)\(^13\)\(^22\)

Questions to be explored differ among various types of evidence review stakeholders, including innovators, policy makers, managers and individual clinicians.\(^14\)\(^15\) Different needs among stakeholders requiring different evidence review methodologies suggest that rather than attempting to formalise the components of rapid reviews, emphasis should be placed on clearly describing what was done and on discussing potential bias and impact on validity of results.\(^10\)\(^13\)\(^14\) In this paper, we attempt to explore and document our experience in meeting the needs of one stakeholder group, rather than in developing a generic approach to rapid evidence review.

A limitation of our evaluation is the lack of formal cost assessment. By leveraging the resources of an evidence synthesis centre, we were able to carry out the reviews using limited amounts of experienced reviewer and librarian time. We do not know to what extent this would be feasible under other circumstances. Even with an experienced EPC librarian and experienced reviewers, we initially tried a variety of approaches in developing our search strategies, and ‘a learning period’ should be expected for organisations trying this type of review for the first time. Searches related to QI are often harder to capture due to the diverse nature of projects.\(^23\) It should be noted that we did not keep track of the literature flow (eg, number of articles screened), and did not record the reasons for exclusion/inclusion of articles in order to adhere to rapid turnaround times for reviews. Another limitation of our approach is that we only assessed yield, uptake and satisfaction with the service; the accuracy of the RIERs was not formally tested. The Evidence Review Workgroup staff relied on their systematic review experience to produce valid and unbiased reports. Broad overviews, however, may miss issues that comprehensive systematic reviews will uncover. In a published comparison between rapid and full reviews, substantial differences were found; however, the authors also highlighted that the essential conclusions of the reviews did not differ extensively.\(^10\)\(^13\)

Finally, we have not measured the impact of the RIERs on innovator design and implementation activities. Generally, literature on the impact of systematic evidence review and the interventions that encourage healthcare policy makers and managers to use evidence review is sparse.\(^24\)

In summary, based on the first 16 months of an ongoing VA evidence-based QI project aimed at primary care redesign, RIERs showed promise for increasing the impact of evidence review on QI initiatives.\(^14\) Additional research and development of systematic approaches for integrating prior evidence into QI are critical for maximising the sophistication and impact of QI efforts in healthcare organisations.

Acknowledgements We would like to thank John Ovretveit and Miriam de Kleijn for helpful comments on earlier drafts of this paper.

Contributors MSD, SH, YWL, RS, AM, SS, PS and LR made substantial contributions to the conception and design of the current project, and also to the acquisition of data and/or the analysis and interpretation of data. MSD, SH, YWL, RS, AM, SS, PS and LR were involved in the drafting and/or critical revision of the article, and approved the final version.

Funding This work was undertaken as part of the Veterans Affairs PACT Demonstration Laboratory initiative, supporting VA transition to a patient-centred medical home. Funding for the PACT Demonstration Laboratory initiative is provided by the VA Office of Patient Care Services. Study# 2011-0521: Patient Centered Medical Home Innovation Evidence-Based Support and Evaluation.

Competing interests None.

Ethics approval HSPC: The HSPC is RAND’s Institutional Review Board to review research involving human subjects, as required by federal regulations. Study# 2011-0521: Patient Centered Medical Home Innovation Evidence-Based Support and Evaluation is considered exempt.

Provenance and peer review Not commissioned; externally peer reviewed.
REFERENCES

APPENDIX A. Responsive Innovation Evidence Review Request Form

Responsive Innovation Evidence Review REQUEST FORM

Problem, Area of Concern, or Outcome Measure to Improve:

Priority: High........ □ Medium........ □ Low........ □

Date of Request: ______ Desired Output Date: ______

Specific Questions:

Innovations Being Considered:

Contact Information:

Name: ______ Group: QC... □ _____ WG... □ _____

Phone: _____ Fax: _____ Email: _____
For this mini-review, we searched the PubMed database from 1999-2011 for “advanced access” or “open access,” “primary health care” or “primary care” or “ambulatory care.” We also did a Google search for similar terms to identify relevant resources.

What is advanced access?
Advanced or open access is the reorganization of clinic practices to improve patients’ access to care. The objective is to allow patients to see a physician or other primary care practitioner at a time and date that is convenient for them. The advanced access model is often considered to be another scheduling system; however, it is better to be considered a comprehensive approach to reengineering patient care delivery.

Since its introduction more than 12 years ago, advanced access has been the subject of much research. Advanced access converges to the following principles in determining successful implementation:

1. **Understand supply/capacity and demand.** Supply is the number of hours and appointments available in a clinical practice. Demand is the patients’ requests for appointments. Calculating demand allows appropriate matching of supply of services.

2. **Reduce backlog.** Backlog is the number of patients waiting to see a physician. Reducing backlog initially requires an upfront commitment of time from providers to work extra hours to clear the backlog before advanced access scheduling can begin. In addition, long term strategies can help sustain low backlog. Examples of these strategies include extending visit intervals, fully utilizing other care team members to shift clinical care and most clerical work away from providers, optimizing continuity, maximizing activities for one visit so as to reduce future work and reviewing schedules for duplicate visits.

3. **Simplify appointment types and times.** This implies equal access for any problem, whether it is urgent, routine or preventative.
4. **Develop contingency plans to sustain the system.** The clinical practice needs to plan for vacations, seasonal increases in demand (e.g. influenza season, back-to-school physicals), and unexpected staff illness.

5. **Reduce demand for unnecessary visits.** This is done by emphasizing continuity of care, managing of primary care panel size, extending visit intervals, and providing other sources of access to care such as group visits, phone visits and e-visits.

6. **Optimize effective supply.** Multiple steps are required to achieve this principle. Delegate physicians’ functions that can be performed by someone else and elevate all members of the care team to the highest level their education and training allows. In addition, standardize best practices.

Advanced access makes intuitive sense, which is why it is frequently considered in the context of patient-centered medical homes. Successful implementation of advanced access has the following theoretical benefits:

- Better patient access to services – all levels (primary, secondary and tertiary).
- Maximum utilization of staff – practitioners work at their full scope of practice thereby reducing practice overlaps and inefficiencies.
- Better clinical outcomes – illnesses/diseases are diagnosed earlier, thus improving the chances of cure and/or treatment.
- More patients able to access health care services – a more efficient clinical practice will be able to accommodate new patients.
- Provider satisfaction improves.. Appropriate clinical practice size is determined so that demand and supply are balanced. As a result, providers do not redirect patients to the emergency departments or put them on long waiting lists.
- Better utilization of financial resources – unnecessary and duplicate visits are eliminated and providers are engaged in appropriate service provision.

What is the evidence that advanced access works?

The evidence of the impact of advanced access has not been entirely positive. Early studies documenting the implementation of advanced access showed promising results such as reduced wait times and better patient satisfaction. But a recent review of 124 studies from 1998 to 2008 by Mehrotra et al. showed the majority of studies had major methodological limitations. Among the studies that assessed outcomes beyond access to care, advanced access had mixed effects on patient satisfaction, staff satisfaction, and no-show rate. Mehrota et al. did an evaluation of six practices in the Boston area and showed that after implementation of advanced access, scheduling improved in some practices but none could achieve same-day access. Patient and staff satisfaction and patient no-show rate were unchanged. The author commented that there were multiple barriers contributing to the lack of demonstrative success after implementation. These barriers included extended provider leaves causing unexpected fluctuations of appointment supply; the inability to assess appointment demand accurately, which was caused by not knowing each physician’s panel size, which in turn not allow accurate calculation of demand. Tantau highlighted other pitfalls that prevented sustainable implementation. These included the failure of not rigorously monitoring and matching daily and weekly
demand and supply for each provider; practices revert to carving out strategies to reserve future supply rather than address backlog that will reemerge when demand and supply are not balanced; poor continuity of care, which drive up demand for visits; backlog reduction that relies solely on working harder and does not use other “smart strategies” to fundamentally change the way demand is managed; and after achieving improved delays, not continuing to aim for zero days’ delay.

Recent qualitative research with patients has indicated that same-day appointments and the flexibility of accessing the appointment system at any time aren’t necessarily as important as anticipated. Among patients with chronic conditions, predictable and regular appointment times that could be planned in advance may be more preferable, especially when patients may not remember to call for their next routine appointment when the time approaches. In contrast, patients with non-chronic or urgent medical needs value sooner appointments (such as for a cold or viral infection) and are not as worried about seeing their own provider. In fact, in one study, after the implementation of advanced access scheduling, the number of chronic disease follow-up appointments decreased but non-chronic disease care visits increased. It was hypothesized that patients previously combined their routine visits with consultations for non-chronic/urgent problems. With advanced access in place, there could be a “decoupling” of the two types of visits. What these recent studies show is that patient’s preference may influence how advanced access scheduling might be modified to accommodate their different needs. A survey of 13,000 patients in the United Kingdom after the implementation of advanced access showed that the top priority for patients was to be seen on their day of choice rather than to be seen quickly. However, different patient groups had different priorities—younger patients preferred to be seen on a specific day, while patients with ongoing medical problems preferred the ability to book appointments well in advance.

It is important to note that better and quicker access to appointments is not equivalent to improved access to care. Improved access is also about care that is coordinated, a strong care relationship between provider and patient, and care that is longitudinally continuous with a given care team/provider. Practices solely focused on advanced access to improve the availability of same-day appointments, could miss the broader picture of improving access to care. For example, Phan et al. and Salisbury et al. found that after the implementation of advanced access, continuity of care (as measured patients seeing the same doctor in a given period of time) either remained the same or declined.

Thus, for successful implementation of advanced access practices should consider how the primary care practice functions and the way care is delivered, patients’ preferences, and barriers to sustainability.

Resources for advanced access implementation

Many resources are available that could inform advance access planning and implementation. Below are a few to consider:
1. Alberta Access Improvement Measure website has a comprehensive list of brief articles covering all aspects of advance access implementation. The website includes a series of over 50 short articles covering a range of topics such as:
 a. Examining Demand, Supply and Activity
 b. Tips for balancing demand and supply
 c. Strategies for reducing no-shows
 d. Provider capacity limits
 e. Advanced access and contingency plans
 f. Plans for patients of the absent provider
 g. Five levels of mapping flow
 h. Key measures of advanced access
 i. Panel and caseload equity
 j. Scripting at the front desk
 http://www.albertaaim.ca/resourcespage.html

2. Mark Murray produced a short but helpful document on how to determine the panel size for doctors.

3. TransforMED, which is a subsidiary of the American Academy of Family Physicians, is a firm that helps practices implement patient centered medical homes. Its resource website provides information on advanced access and other general access to care resource materials.
 http://www.transformed.com/resources/Access.cfm

References
Evidence Table: Summary of articles cited in this overview

<p>| Author/Year/Journal | Title | Study Design | Data Source | Context | Sample Size/Characteristics | Outcomes Measured | Results |
|---------------------|--|--------------|--|-----------------------------|--|--|
| Mehrotra (2008) Ann Intern Med | Implementing Open Access Scheduling of Visits in Primary Care practices: A Cautionary Tale | Case series | 1. Manual and automated scheduling systems. 2. Surveys | 3 family practices, 2 community health centers, and 1 internal medicine practice in the Boston, Massachusetts metropolitan area. No. of providers ranged from 4-8. There were up to 5 nurse practitioners/physician's assistants in these practices. | 2 family practices served a middle class suburban patient population and 1 served a poor to working-class community. Both community clinics served Latino immigrants with one serving middle class communities as well. The internal medicine practice served a well-educated, wealthy, suburban patient community. | 1. Time to third available appointments 2. No show rates 3. Patient and staff satisfaction with appointment availability | 1. Substantial reduction in mean wait times to third available wait time within 4 months of implementation for 5 of the 6 clinics. 2. None of the 5 clinics with OAS attained the goal of same-day access and waits for third available appointments increased during the 2 year follow up period. 3. No consistent changes reported in patient and staff satisfaction or patient no-show rates. Barriers to OAS implementation: 4. Decreases in appointments due to leave of absence and physician departures 5. Increases in appointment demand when practices reopened to new patients after initial implementation of OAS. |
| Tantau (2009) J Ambulatory Care Manage | Accessing Patient Centered Care using the Advanced Access Model. | Case study | Not explicitly reported. | Ministry Medical Group (MMG) is a traditional multispecialty, mixed payer model with large and small practices in urban, rural and suburban areas in Wisconsin. Providence Community Health Centers (CHHC) provides services to an inner city, urban population in Providence, Rhode Island including pediatrics, | Not reported. | 1. Access to third next available appointment 2. Appointment no show rates 3. Number of calendar days until third appointment 4. No. of office visits | 1. Significant reduction in delays for patients at both clinics. 2. General reduction over time in time to next available long appointment (MMG), delays in OR scheduling for ENT surgery (MMG), delay in reduction of imaging services (MMG), no show rate (CHHC), and number of calendar days until third appointment (CHHC). 3. Increase in total number of physician office visits and closer alignment of demand and supply over time at Huron Gastroenterology. |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Title</th>
<th>Methodology</th>
<th>Findings</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gladstone & Howard (2011)</td>
<td>Effect of Advanced Access Scheduling on chronic health care in a Canadian Practice.</td>
<td>Pre-post (before and after installation of the Advanced Access Scheduling system)</td>
<td>Chart Abstraction: A primary care physician's practice in Canada</td>
<td>259 (51% male, 216 Hypertension, 156 Type 2 Diabetes, 77 Coronary Artery Disease)</td>
</tr>
<tr>
<td>Salisbury (2007)</td>
<td>Does Advanced Access improve access to primary health care?</td>
<td>Cross-sectional survey</td>
<td>General Practice Assessment Questionnaire (GPAQ) and patient questionnaire survey</td>
<td>24 practices that had implemented AAS and 23 controls in 12 primary care trust areas of England.</td>
</tr>
<tr>
<td>Pope (2008)</td>
<td>Improving access to primary care: eight case studies of introducing Advanced Access in England.</td>
<td>Qualitative structured case studies</td>
<td>A large mixed method study which used routine activity data, surveys, discrete choice experiments and qualitative research on Advanced Access Practices.</td>
<td>4 general practice clinics using Advanced Access and 4 which did not report using Advanced Access (controls).</td>
</tr>
<tr>
<td>Phan (2009) Fam Med</td>
<td>Decreased continuity in a residency clinic: A consequence of Open Access Scheduling.</td>
<td>Pre-post (before and after installation of the Open Access Scheduling system)</td>
<td>Patient visits and provider information obtained from the billing and scheduling system (SOURCE 2000).</td>
<td>Family Medicine Center (FMC) is the ambulatory care site for the Banner Good Samaritan Family Medicine Residency program in Phoenix. FMC serves an urban population. It has 32 physicians (24 residents & 8 faculty). The clinic has 12000 patient visits each year.</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlled trial and a simulated patient study.</td>
<td>Administrative data from AAS and control clinics.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 practices that had implemented AAS and 24 controls in 12 primary care trust areas of England.</td>
<td>38% of AA practices offered personal medical services contracts compared to 29% of controls, 50% had a training practice compared to 38% of controls, 54% received deprivation payments compared to 58% of controls, 17% had any dispensing patients compared to 13% of controls, and 46% were previously fund holding practices compared to 33% of controls. Mean list size was 8240 with 4.19 whole time equivalent doctors for AAS clinics and 6782 for controls with 3.80 whole time equivalent doctors for controls.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to care: 1. Time taken to make telephone contact 2. Wait for the first and third available appointments (for a specific doctor and any available doctor)</td>
<td>Practice capacity and workload: 3. No. of bookable appointments (doctors & nurses) 4. No. of patients seen by the doctor in the surgery (doctors and nurses).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity of care: 5. Date/type/professional status/clinical identifier data from patient records (used to calculate the Continuity of Care Index).</td>
<td>1. Wait time for appointment with any doctor slightly shorter than control practices. 2. No significant differences in wait times for appointments with a specific doctor. 3. No significant differences in continuity of care (for both doctors and nurses) between the AA and control practices. 4. AA practices provided considerably more appointments in the post AA-period than the pre AA-period. 5. The number of appointments offered, and patients seen increased over time across both AA and control practices with no significant differences between them. 6. AA practices met the NHS's target of doctors seeing patients within 48 hours of request for appointment on 71% of occasions compared to 60% for the control clinics, but this failed to reach statistical significance.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Communication between Primary Care and Mental Health Providers

Background

There is a large body of literature on collaboration between primary care and mental health professionals but success varies (see e.g., Smith et al., 2007). Variation may be due to the specific model of collaboration, the uptake and adherence, and the level of achieved collaboration. Communication between providers is facilitated through shared care documents and established in the form of referral letters. However, interactive communication (as opposed to one-way, static communication) may be a key element of successful models.

Review questions

The questions this review is aiming to address are

1. What are some effective and efficient evidence-based strategies to allow for two-way communication between primary care and mental health?
2. What are the known barriers and facilitators of communication among primary care and mental health providers?

The questions were rooted in concerns about communication and timely feedback for referrals in interactions between primary care and mental health providers. Two specific interventions that a VA innovation team discussed were the use of a common care document and co-location of primary care and mental health providers.

Review methods review question 1

To answer review question 1 we searched for meta-analyses on the topic coordinated care, integrated care, inter-professional collaboration and inter-professional communication and meta-analyses indexed with the MeSH term Interdisciplinary Communication* in October 2011.

We chose the recently published meta-analysis (Foy et al., 2010) prepared by the Southern California Evidence-based Practice Center (EPC) entitled “Meta-analysis: Effect of interactive communication between collaborating primary care physicians and specialists” to select studies investigating the effects of interactive communication. To identify effective strategies we chose comparative studies that reported on the effect of patient outcomes, testing whether the model of collaboration made a difference to patients’ health compared to standard care arrangements.
Results review question 1

1. What are some effective and efficient evidence-based strategies to allow for two-way communication between primary care and mental health?

Collaboration models can range from coordinated care, co-located care, and integrated care (e.g., Collins et al., 2010). Coordinated care typically includes a referral relationship between primary and secondary care with routine screening done in primary care. Some healthcare organizations establish co-located services where primary and secondary care are located in the same building. An example of full integration between primary and mental healthcare would be one treatment plan established jointly by both provider types. However, interactive communication is not necessarily seen in practice through in referral or co-location arrangements. Referral systems are characterized by one-way communication. Co-location does not guarantee interactive communication; providers may just as well co-exist in the facility without inter-professional exchange.

The meta-analysis by Foy et al. (2010) highlighted interactive communication as a key feature for collaboration. The review included studies describing collaborative arrangements between primary care and specialist physicians that facilitated interactive communication about the care of individual patients. Interventions that were not part of a planned collaborative arrangement, such as specialist help-lines, and exclusively through a third party, such as a care manager, were not sought and the review did not assume that arrangements such as shared patient records or co-location automatically enabled interactive communication between primary care and specialist physicians.

It is assumed that coordination needs between primary and secondary care providers are not specific to mental health care, in particular patients with chronic illness are likely to receive care from both primary care physicians and specialists, but the majority of available evidence came from studies in mental health. The evidence table shows the individual interventions, how interactive communication was achieved in the particular study, and the effect sizes for patient outcomes. The table is ordered by effect sizes, listing most effective models first.
<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Type of Study</th>
<th>Setting</th>
<th>Clinical Problem Addressed</th>
<th>Outcome Measure Selected for Meta-analysis</th>
<th>Patients, n</th>
<th>Summary of Intervention</th>
<th>Point Estimate (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>van der Feltz-Cornelis et al (2006)</td>
<td>Cluster RCT (practice of physician-level allocation)</td>
<td>36 general practices with on-site psychiatric clinics in the Netherlands</td>
<td>Various mental health problems</td>
<td>Medically unexplained symptom severity at 6 mo</td>
<td>58 23</td>
<td>Following a joint patient consultation, the psychiatrist shares diagnostic and treatment advice with PCP; psychiatrist summarizes treatment options in a letter to PCP and patient, who then agree on management; psychiatrist checks usefulness of advice with PCP.</td>
<td>−1.76 (95% CI: −2.32 to −1.21)</td>
</tr>
<tr>
<td>Dietrich et al (2003)</td>
<td>Uncontrolled before-after studies</td>
<td>5 general practices and a supporting psychiatrist in the United States</td>
<td>Depression</td>
<td>Symptom Check List 20 at 2 mo</td>
<td>60 60</td>
<td>Care coordinated by care manager and supervised by a psychiatrist; psychiatrist regularly telephones PCP with updates and to offer management suggestions, if necessary; psychiatrist also available at designated times per week to answer queries.</td>
<td>−1.31 (95% CI: −1.71 to −0.92)</td>
</tr>
<tr>
<td>Katzelnick et al (2000)</td>
<td>Cluster RCT (practice of physician-level allocation)</td>
<td>163 primary care practices and psychiatrists in the United States</td>
<td>Depression</td>
<td>Hamilton Depression Scale at 12 mo</td>
<td>218 189</td>
<td>Depression management program; PCP and psychiatrist have ongoing contact via periodic case reviews and telephone consultations as needed; coordinators monitor adherence to treatment algorithms; consultation with psychiatrist for non-responders.</td>
<td>−1.23 (95% CI: −1.45 to −1.01)</td>
</tr>
<tr>
<td>Datto et al (2003)</td>
<td>Uncontrolled before-after studies</td>
<td>11 general practices and health system psychiatrists in the United States</td>
<td>Depression</td>
<td>CES-D at 3 mo</td>
<td>76 154</td>
<td>Psychiatrist supervises disease management nurse and facilitates treatment planning; results of assessment are discussed with and sent to referring PCP; latter has contact with the psychiatrist as necessary and access to treatment algorithm.</td>
<td>−1.02 (95% CI: −1.31 to −0.73)</td>
</tr>
<tr>
<td>Kennedy and Yellowlees (2003)</td>
<td>Controlled before-after studies</td>
<td>4 general practices and a private psychiatry service in Australia</td>
<td>Various mental health problems</td>
<td>Mental Health Inventory total score at 12 mo</td>
<td>32 92</td>
<td>Tele-psychiatry used for clinical consultations involving PCP and psychiatrist; objectives include initiation of treatment, discharge planning, and provision of other clinical advice.</td>
<td>−0.54 (95% CI: −0.80 to −0.28)</td>
</tr>
<tr>
<td>Chelminski et</td>
<td>Uncontrolled</td>
<td>1 general practice</td>
<td>Psychiatric</td>
<td>Pain disability</td>
<td>63 85</td>
<td>Multidisciplinary team that includes PCP</td>
<td>−0.48 (95% CI: −1.03 to 0.10)</td>
</tr>
<tr>
<td>Year</td>
<td>Study Design</td>
<td>Primary Setting</td>
<td>Primary Outcome</td>
<td>Index Time</td>
<td>Methodology</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>before-after studies</td>
<td>a multidisciplinary mental health team in the United States</td>
<td>comorbidities</td>
<td>index at 3 mo</td>
<td>and psychiatrist sees patient together; patient progress and medication use subsequently monitored by team and discussed with PCP when necessary.</td>
<td>0.81 to –0.15</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Cluster RCT (practice of physician-level allocation)</td>
<td>35 general practices and health system psychiatrists in the United States</td>
<td>Depression CES-D at 4 mo</td>
<td>30</td>
<td>Psychiatrist supervises disease management nurse and facilitates treatment planning; summaries of assessment sent to PCP who has contact with the psychiatrist as necessary (method of communication unclear).</td>
<td>–0.42 (95% CI: –0.89 to 0.05)</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>RCTs (patient-level allocation)</td>
<td>1 primary care clinic and psychiatrist in the United States</td>
<td>Depression</td>
<td>Symptom Check List at 4 mo</td>
<td>Monthly case conference that involves psychiatrist and PCP, tailored to questions about depression treatment, that allows feedback and interaction through case-by-case consultations; delivery of care follows a structured schedule with psychiatrist and PCP seeing the patient regularly and PCP receiving information immediately after psychiatric consultations; psychiatrist advises on medication selection and monitors refills; treatment changes can be initiated after discussion.</td>
<td>–0.42 (95% CI: –0.90 to 0.06)</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>RCTs (patient-level allocation)</td>
<td>4 primary care clinics with on-site psychiatrists in the United States</td>
<td>Depression</td>
<td>Symptom Check List at 28 mo</td>
<td>Stepped-care approach; PCP treats patient, and psychiatrist provides on-site psychiatric consultation and recommends medication, additional psychotherapy, or facilitated referrals in short-term treatment; monitoring of depression outcomes and refills by both; psychiatrist discusses cases with PCP immediately after consultation and written summary from psychiatrist is sent within 1 week.</td>
<td>–0.35 (95% CI: –0.64 to –0.07)</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>Cluster RCT (practice of physician-level allocation)</td>
<td>42 family practices and an education workshop team in Canada</td>
<td>Depression</td>
<td>CES-D at 6 mo</td>
<td>PCP invited to discuss individual cases with a psychiatrist within an educational workshop; psychiatrist also regularly available for advice on patient management each week.</td>
<td>–0.22 (95% CI: –0.56 to 0.11)</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>RCTs (patient-level allocation)</td>
<td>8 primary care sites and psychiatrists in the United States</td>
<td>Depression</td>
<td>Symptom Check List-90 (depression) at 12 mo</td>
<td>PCP and tele-psychiatrist collaborate by discussing cases by telephone or videoconference after patient tele-psychiatric appointments; psychiatrist advises PCP on medication; PCP notified when patients miss an appointment.</td>
<td>–0.20 (95% CI: –0.61 to 0.21)</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Cluster RCT (practice of physician-level allocation)</td>
<td>60 general practices and a mental health service in the United States</td>
<td>Depression</td>
<td>Symptom Check List-20 at 6 mo</td>
<td>Care coordinated by care manager and supervised by psychiatrist; psychiatrist can suggest treatment changes through care</td>
<td>–0.16 (95% CI: –0.37 to 0.06)</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Design/Methodology</td>
<td>Setting</td>
<td>Outcomes/Interventions</td>
<td>Effect Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smit et al (2005)</td>
<td>RCTs (patient-level allocation)</td>
<td>General practices and psychiatrists in the Netherlands</td>
<td>Depression; Self-efficacy summary score at 12 mo</td>
<td>–0.10 (95% CI: –0.53 to 0.32)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carr et al (1997)</td>
<td>Controlled before-after studies</td>
<td>8 general practices and a consultation–liaison psychiatry service in Australia</td>
<td>Various mental health problems; Symptom Check List-90-Revised global severity index at 6 mo</td>
<td>–0.02 (95% CI: –0.39 to 0.35)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Younès et al (2008)</td>
<td>Controlled before-after studies</td>
<td>General practices and 3 specialist consultation centers in public hospitals in France</td>
<td>Various mental health problems; Patients judged in remission at 18 mo</td>
<td>0.00 (95% CI: –0.18 to 0.18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedrick et al (2003)</td>
<td>Cluster RCT (practice of physician-level allocation)</td>
<td>4 Veterans Affairs primary care firms and a general internal medicine clinic in the United States</td>
<td>Depression; Symptom Check List at 9 mo</td>
<td>0.04 (95% CI: –0.18 to 0.26)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferguson et al (1992)</td>
<td>Nonrandomized controlled trial</td>
<td>General practices and a Community psychiatric service in the United Kingdom</td>
<td>Various mental health problems; Comprehensive Psychopathologic al Rating Scale at 36 mo</td>
<td>0.06 (95% CI: –0.24 to 0.35)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katon et al (1992)</td>
<td>RCTs (patient-level allocation)</td>
<td>2 primary care clinics and psychiatrists in the United States</td>
<td>Psychiatric distress; Symptom Check List at 12 mo</td>
<td>0.07 (95% CI: –0.19 to 0.32)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Endocrinology
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Design Type</th>
<th>Setting Description</th>
<th>Condition</th>
<th>HbA1c Measure</th>
<th>N Intervention</th>
<th>N Control</th>
<th>Outcome</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>King et al (2006)</td>
<td>Uncontrolled before-after studies</td>
<td>3 pediatric group practices and a diabetes research and training center in the United States</td>
<td>Diabetes</td>
<td>HbA1c at 12 mo</td>
<td>20</td>
<td>29</td>
<td>−1.43</td>
<td>(95% CI: −2.09 to −0.78)</td>
</tr>
<tr>
<td>Simmons (2003)</td>
<td>Uncontrolled before-after studies</td>
<td>A community Aboriginal health service and diabetes specialist clinic in Australia</td>
<td>Diabetes</td>
<td>HbA1c at 10 mo</td>
<td>47</td>
<td>47</td>
<td>−1.22</td>
<td>(95% CI: −1.77 to −0.66)</td>
</tr>
<tr>
<td>Harris et al (2008)</td>
<td>Uncontrolled before-after studies</td>
<td>34 family practices and endocrinology services in Canada</td>
<td>Diabetes</td>
<td>HbA1c at 6 mo</td>
<td>260</td>
<td>240</td>
<td>−0.63</td>
<td>(95% CI: −0.81 to −0.45)</td>
</tr>
<tr>
<td>Maislos et al (2002)</td>
<td>Uncontrolled before-after studies</td>
<td>Primary care clinics and a mobile diabetes clinic in Israel</td>
<td>Diabetes</td>
<td>HbA1c (duration of follow-up uncertain)</td>
<td>492</td>
<td>492</td>
<td>−0.31</td>
<td>(95% CI: −0.45 to −0.17)</td>
</tr>
<tr>
<td>Abrahamian et al (2002)</td>
<td>Uncontrolled before-after studies</td>
<td>4 general practices and a diabetes center in Austria</td>
<td>Diabetes</td>
<td>Diabetes HbA1c at 12 mo</td>
<td>136</td>
<td>154</td>
<td>−0.25</td>
<td>(95% CI: −0.49 to −0.01)</td>
</tr>
</tbody>
</table>

Notes: Data from Foy et al. (2010); negative effect sizes indicate the intervention group had lower mean outcomes which indicates improvement.
Interactive communication modalities included face-to-face or telephone discussions concerning the care of individual patients and joint videoconferencing involving the patient, primary care physician and specialist. For example, an intervention by Katon and colleagues included an initial joint patient consultation involving the psychiatrist and primary care physician with formulation of a treatment plan and use of a protocol to guide subsequent review. Interactive communication included immediate (or ‘real time’) and delayed (or ‘serial’) exchanges. For example, an intervention by Hedrick and colleagues included a liaison psychiatrist who reviewed patient progress and treatment plans and then communicated with primary care physicians via electronic progress notes.

The evaluated collaboration models often used a structured approach to interactions with fixed scheduled meetings, e.g., following an intervention that included a joint patient consultation (see van der Feltz-Cornelis et al., 2006) or studies describing regular phone calls to communicate updates (e.g., Dietrich et al., 2003). Interventions did not rely on the physical proximity of providers (co-location); several effective models used video and phone conferences to facilitate interaction.

Review methods review question 2

To answer question 2 we used an exploratory search strategy “(Mental health AND (barriers OR facilitators) AND (integrated care OR collaborative care or coordinated care OR interprofessional collaboration) NOT hospital)” to identify provider perceptions of barriers and facilitators. We selected a seed article (Kilbourne et al., 2011) and used the Related Citations function in PubMed to identify further relevant studies. In addition, the PubMed Related Citations search function was used for all studies meeting inclusion criteria. Only open access and studies immediately available through RAND library holding were considered; the RAND library subscribes to 40,000 journals.

We selected studies reporting on perceived facilitators and barriers of collaboration (including, but not restricted to communication) between ambulatory healthcare professionals in the US treating adult patients. Studies had to report results of a structured elicitation of facilitators and barriers from primary and/or mental health providers. Only studies reporting on professional interactions between primary care and mental health providers were included. Studies primarily focused on improving care access in rural areas or barriers to healthcare in general rather than collaboration between primary care and mental health providers were not sought.

Results review question 2

2. **What are the known barriers and facilitators of communication among primary care and mental health providers?**

A small number of published provider surveys have tried to identify what the specific perceived barriers are for effective collaboration between primary and secondary care and tried to elicit how integrated care could be improved. The evidence table 2 describes results of provider surveys with regard to perceived barriers and facilitators of collaboration between primary care and mental health providers.
<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Type of Study</th>
<th>Respondents Notes</th>
<th>Barriers Topic</th>
<th>Perceived Barriers</th>
<th>Facilitators Topic</th>
<th>Perceived Facilitators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cunningham et al. (2009)</td>
<td>Survey</td>
<td>Representative sample of 6,600 nonfederal physicians</td>
<td>Lack of or inadequate coverage</td>
<td>- 59% outpatients MH services</td>
<td>- Managed care</td>
<td>- Difficulties in accessing and coordinating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reasons given by PC physicians for not getting needed services (% applicable)</td>
<td>Health plan barriers</td>
<td>- 48% specialist referrals</td>
<td>- Double gatekeeper system (initial referral from PC provider to psychiatrist, followed by second gatekeeper (MH representative) to determine eligibility for care)</td>
<td>- Specialist is on-site</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shortage of providers</td>
<td>- 35% nonemergency hospital admissions</td>
<td>- Carve-outs (‘managed care approach to cut costs for psychological or psychiatric services by separating those services from medical care services’)</td>
<td></td>
</tr>
<tr>
<td>Fickel et al. (2007)</td>
<td>Semi-structure d phone interviews</td>
<td>22 PC and MH providers leaders in 10 VA outpatients facilities</td>
<td>Barriers to PC - MH collaboration in depression screening and management</td>
<td>- 51% outpatients MH services;</td>
<td>- MH understaffed / insufficient resources</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barriers nominated by between 1 to 7 PC and MH providers</td>
<td></td>
<td>- 47% specialist referrals</td>
<td>- PC understaffed / insufficient resources / insufficient resources</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 38% nonemergency hospital admissions</td>
<td>- PC and MH clinics too far apart</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- PC over-refers patients to MH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- PC not interested in MH issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Insufficient number of joint case conferences</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Inadequate referral information from PC providers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- History of not working closely together</td>
<td></td>
</tr>
<tr>
<td>Franz et al. (2010)</td>
<td>Open-ended interview questions</td>
<td>40 PC physicians in Northern California treating patients with Alzheimer’s disease (see also Hinton et al., 2007)</td>
<td>Structural, institutional, and administrative barriers to accessing specialty MH care</td>
<td>- Insufficient number of joint case conferences</td>
<td>- Managed care</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Double gatekeeper system (initial referral from PC provider to psychiatrist, followed by second gatekeeper (MH representative) to determine eligibility for care)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Carve-outs (‘managed care approach to cut costs for psychological or psychiatric services by separating those services from medical care services’)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Patients schedule own appointment with MH, PC physician is unlikely or slow to know whether or when a visit occurred</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Reimbursement policies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Lack of geriatric and psychiatric training of PC physicians necessitating referrals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- inadequate number or maldistribution of trained psychiatrists or neuropsychologists (particularly in rural areas)</td>
<td></td>
</tr>
<tr>
<td>Hinton et al.</td>
<td>Open-</td>
<td>40 PC physicians in Northern</td>
<td>Access and</td>
<td>- Difficulties in accessing and coordinating</td>
<td>- Specialist is on-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, Year</td>
<td>Type of Study</td>
<td>Respondents Notes</td>
<td>Barriers Topic</td>
<td>Perceived Barriers</td>
<td>Facilitators Topic</td>
<td>Perceived Facilitators</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>(2007)</td>
<td>ended interview questions</td>
<td>California providing care for community-dwelling older adults with dementia (see also Franz et al., 2010)</td>
<td>communicating with specialists</td>
<td>specialty care - Long waiting lists - Limited availability - Cumbersome referral mechanisms - Insurance plans in which MH benefits are ‘carved-out’ to a MH care manager requiring patients to call and set up appointments (only persistent patients are successful) - Lack of or slow feedback (clinical notes or recommendations) allowing the PC physicians to discuss the specialist’s recommendation with the patient and their family (patient comes back from appointment but doesn’t understand the recommendation enough and is frustrated)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kilbourne et al. (2008)</td>
<td>Survey and Focus Groups</td>
<td>23 MH and/or general medical practices across the US Frequency of responses (% of all discussed issues) in focus groups were extracted</td>
<td>Administrative / operations barriers</td>
<td>- Administrative policies, standards, agreements: 27% - Common methods for analyzing data and constructing evaluation measures: 32% - Information technology and privacy concerns: 32% Other: 9%</td>
<td>Discussed solutions to barriers</td>
<td>- Template for memoranda of understanding and job descriptions - Access to standardized research methods, outcomes and analyses - Establishment of firewalls (secure electronic records) to protect MH data - State to provide start-up funds for integrated care (e.g., PC provider in MH settings and vice-versa) - Instructions on how to bill Medicare/Medicaid for care - Data capturing costs of care (MH and general medical), integrated data sources - Information on interested foundations - Templates/protocols for different models</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Financing barriers</td>
<td>- State variation in funding rules: 28% - Reimbursement codes: 20% - Demonstrate cost-efficiency, return-on-investment: 16% - Start-up costs to jump-start program: 4% - Other: 4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinical barriers</td>
<td>- Protocol and clarity in delineation of roles, balancing workflow: 32%</td>
<td>Discussed solutions to barriers</td>
<td></td>
</tr>
<tr>
<td>Author, Year</td>
<td>Type of Study</td>
<td>Respondents</td>
<td>Barriers Topic</td>
<td>Perceived Barriers</td>
<td>Facilitators Topic</td>
<td>Perceived Facilitators</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| Kilbourne, (2011) | Telephone interviews | 32 MH clinicians (psychiatrists, psychologists, social workers, nurses) treating Veterans with Serious Mental Illnesses (SMI), 4 providers per site; 4 high-performing and 4 low-performing MH programs across the US | Lack of communication with PCPs | - Lack of opportunities to interact on a face-to-face basis
- Lack of opportunities to have team meetings | Building informal relationships with PC providers | - Formal meetings, routine meetings
- More informal, in-person communication, communication through notes in medical records |
| | | | Governance barriers | - Profession clinical liability (lack of knowledge of state law and concerns about liability with multiple clinical roles and input): 12%
- Other: 8% | Discussed solutions to barriers | regarding integrated roles and workflow;
- Co-location of general medical providers within MH clinics, and/or MH providers within general medical clinics;
- Care management programs for those with chronic general medical and MH conditions
- In-services to address unique roles and different organizational cultures of general medical and MHP
- Standardized fidelity tool
- Adapted model for ER settings
- Consultant for political issues on the state and federal level
- Identification of legal “land minds”; clarifications on laws |
| | | | Other barriers | - Contact information, consultants: 4%
- Involvement of national organizations: 4% | | n/a |
| | | | Barriers Topic | - Cultural differences and readiness to changes: 29%
- Lack of common integrated care model: 14%
- Lack of involvement of emergency rooms: 14%
- Other: 10% | | |
<p>| | | | Perceived Barriers | Facilitators Topic | Perceived Facilitators | |
| | | | Responsibility for medical problems (which provider is responsible), uncertainty regarding management of | | n/a |</p>
<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Type of Study</th>
<th>Respondents Notes</th>
<th>Barriers Topic</th>
<th>Perceived Barriers</th>
<th>Facilitators Topic</th>
<th>Perceived Facilitators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>routine medical issues (could be addressed within MH or PC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Perception and stigma of SMI patients by PCPs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | | General | - PC providers don’t want to deal with MH patients
- MH providers don’t want to deal with medical problems
- PC doesn’t want to hear from MH providers
- MH providers think that PC providers think MH patients just want to obtain pain medication (consequently patients are send directly to MH even if presenting to the ER)
- Challenges to hiring enough support staff to facilitate coordination of medical and psychiatric care- | Each specialty should try to understand how they approach clinical problems differently in order to facilitate communication | - e.g., awareness of medical versus biopsychosocial model or that MH have more time with patients |
| Kushner, (2001) | Survey (questionnaire) | 684 PC physicians in Wisconsin | Access to care (scores range from 1, extremely difficult, to 7, very easy, no problem) | - Difficulty in finding MH treatment and consultation for patients on Medicaid or no insurance: 3.08 | Access to care (scores range from 1, extremely difficult, to 7, very easy, no problem) | - Ease for patient of seeing a MH for non-psychiatric emergency: 4.29
- Ease for patient of seeing a MH for psychiatric emergency: 4.29
- Ease of arranging an informal phone consultation with MH professional: 4.36
- Desire to share responsibility when referred or MH to take over: 5 |
<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Type of Study</th>
<th>Respondents Notes</th>
<th>Barriers Topic</th>
<th>Perceived Barriers</th>
<th>Facilitators Topic</th>
<th>Perceived Facilitators</th>
</tr>
</thead>
</table>
| Sanchez, (2010) | Survey | 84 behavioral health and PC providers’ response regarding integrated care between behavioral health and PC provider in Texas | Clinical barriers to treating behavioral health problems in PC | - Providers’ limited training: 70%
- Lack of training in evidence-based behavioral health treatments: 50%
- Culture and language differences between PC and behavioral health providers: 42%
- Providers’ lack of awareness of evidence-based behavioral health treatments: 38%
- Provider’s stigmatizing attitudes: 37% | Strategies for treating behavioral health problems in a PC setting: screening | - Screening for psychiatric disorders (other than substance abuse): 86%
- Screening for substance abuse: 87%
- Paper-based or verbal screening: 86%
- Computed-based screening: 23%
- Psychiatric consultation to PC staff: 39%
- Co-treatment of behavioral health problems by PC and specialty behavioral health providers: 69%
- Referrals to off-site specialty behavioral health providers: 85%
- Co-location of behavioral health providers in PC setting: 65%
- Psychiatric medications: 63%
- Use of medication algorithms for behavioral health disorders: 27% |
| | | | | - Quality of communication between PCP and MHP when sharing patients: 3.50 | | |
| | | | | - Workforce shortages: 86%
- Physicians’ limited time: 77%
- Information-sharing obstacles: 67%
- Physical separation of medical and behavioral health providers: 64%
- PC’s orientation towards acute (vs chronic) care: 54%
- Behavioral health providers’ lack of a public health perspective: 43%
- Lack of agreement between medical and behavioral health providers about provider responsible for patient: 40% | Strategies for treating behavioral health problems in a PC setting: | | |
<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Type of Study</th>
<th>Respondents Notes</th>
<th>Barriers Topic</th>
<th>Perceived Barriers</th>
<th>Facilitators Topic</th>
<th>Perceived Facilitators</th>
</tr>
</thead>
</table>
| | | | Financial barriers | - Lack of reimbursement for clinical care management and paraprofessionals’ services: 71%
- Lack of reimbursement for screening services: 68%
- Lack of reimbursement for consultation between PC and behavioral health providers: 64%
- PC providers’ inability to bill for behavioral health services: 60%
- Inability to bill using health and behavior codes: 56%
- Same day billing restrictions: 41% |
| | | | Strategies for treating behavioral health problems in a PC setting:
Outcomes tracking strategies |
| | | | Strategies for treating behavioral health problems in a PC setting:
Training and education strategies |
| | | | Strategies for treating behavioral health problems in a PC setting:
Care management strategies |

Notes: PC: Primary care, MH: Mental health; vs: versus
Several surveys described difficulties with accessing mental health care for primary care providers. This was due to perceived insufficient resources as well as structural problems with patients having to make appointments with mental health professionals themselves. The lack of (timely) feedback or joint case conferences were also recurrent themes. In addition, providers indicated that the responsibility for managing medical problems that could be addressed by primary care or mental health providers, was not clear.

Fewer surveys elicited potential strategies to improve collaboration and communication between primary care and mental health providers. Suggestions included formal agreements to delineate responsibilities; co-location; care management programs or a collaborative, single treatment plan for patients; and regular scheduled meetings.

References

Becomes a Hindrance: Mental Health Referral Systems as Barriers to Care for Primary Care

Harris, S., J. F. Yale, E. Dempsey, and H. Gerstein, "Can Family Physicians Help Patients Initiate Basal
Insulin Therapy Successfully?: Randomized Trial of Patient-Titrated Insulin Glargine Compared
with Standard Oral Therapy: Lessons for Family Practice from the Canadian Insight Trial," *Can

Hedrick, S. C., E. F. Chaney, B. Felker, C. F. Liu, N. Hasenberg, P. Heagerty, J. Buchanan, R. Bagala, D.
Greenberg, G. Paden, S. D. Fihn, and W. Katon, "Effectiveness of Collaborative Care Depression

Kilbourne, A. M., C. Irmiter, J. Capobianco, K. Reynolds, K. Milner, K. Barry, and F. C. Blow,

