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IntroductIon
In medicine, artificial intelligence (AI) 
research is becoming increasingly focused 
on applying machine learning (ML) tech-
niques to complex problems, and so 
allowing computers to make predictions 
from large amounts of patient data, by 
learning their own associations.1 Esti-
mates of the impact of AI on the wider 
economy globally vary wildly, with a 
recent report suggesting a 14% effect on 
global gross domestic product by 2030, 
half of which coming from productivity 
improvements.2 These predictions create 
political appetite for the rapid develop-
ment of the AI industry,3 and healthcare 
is a priority area where this technology 
has yet to be exploited.2 3 The digital 
health revolution described by Duggal et 
al4 is already in full swing with the poten-
tial to ‘disrupt’ healthcare. Health AI 
research has demonstrated some impres-
sive results,5–10 but its clinical value has 
not yet been realised, hindered partly by 
a lack of a clear understanding of how to 
quantify benefit or ensure patient safety, 
and increasing concerns about the ethical 
and medico-legal impact.11

This analysis is written with the dual 
aim of helping clinical safety professionals 
to critically appraise current medical 
AI research from a quality and safety 
perspective, and supporting research and 
development in AI by highlighting some of 
the clinical safety questions that must be 
considered if medical application of these 
exciting technologies is to be successful.

trends In ML research
Clinical decision support systems (DSS) 
are in widespread use in medicine and 
have had most impact providing guid-
ance on the safe prescription of medi-
cines,12 guideline adherence, simple risk 
screening13 or prognostic scoring.14 These 
systems use predefined rules, which have 

predictable behaviour and are usually 
shown to reduce clinical error,12 although 
sometimes inadvertently introduce safety 
issues themselves.15 16 Rules-based systems 
have also been developed to address diag-
nostic uncertainty17–19 but have struggled 
to deal with the breadth and variety of 
information involved in the typical diag-
nostic process, a problem for which ML 
systems are potentially better suited.

As a result of this gap, the bulk of 
research into medical applications of 
ML has focused on diagnostic deci-
sion support, often in a specific clinical 
domain such as radiology, using algo-
rithms that learn to classify from training 
examples (supervised learning). Some of 
this research is beginning to be applied 
to clinical practice, and from these expe-
riences lessons can be learnt about both 
quality and safety. Notable examples of 
this include the diagnosis of malignancy 
from photographs of skin lesions,6 predic-
tion of sight-threatening eye disease from 
optical coherence tomography (OCT) 
scans7 and prediction of impending sepsis 
from a set of clinical observations and test 
results.20 21

Outside of diagnostic support ML 
systems are being developed to provide 
other kinds of decision support, such as 
providing risk predictions (eg, for sepsis20) 
based on a multitude of complex factors, 
or tailoring specific types of therapy to 
individuals. Systems are now entering 
clinical practice that can analyse CT scans 
of a patient with cancer and by combining 
this data with learning from previous 
patients, provide a radiation treatment 
recommendation, tailored to that patient 
which aims to minimise damage to nearby 
organs.22

Other earlier stage research in this 
area uses algorithms that learn strategies 
to maximise a ‘reward’ (reinforcement 
learning). These have been used to test 
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Figure 1 Expected trends in machine learning (ML) research: boxes 
show representative examples of decision support tasks that are currently 
offered by rule-based systems (grey), and hypothetical applications of 
ML systems in the future (yellow and orange), demonstrating increasing 
automation. The characteristics of the ML systems that support these tasks 
are anticipated to evolve, with systems becoming more proactive and 
reward driven, continuously learning to meet more complex applications, 
but potentially requiring more monitoring to ensure they are working as 
expected. AI, artificial intelligence; DSS, decision support systems.

approaches to other personalised treatment prob-
lems such as optimising a heparin loading regime to 
maximise time spent within the therapeutic range23 or 
targeting blood glucose control in septic patients to 
minimise mortality.24

Looking further ahead AI systems may develop 
that go beyond recommendation of clinical action. 
Such systems may, for example, autonomously triage 
patients or prioritise individual’s access to clin-
ical services by screening referrals. Such systems 
could entail significant ethical issues by perpetuating 
inequality,25 analogous to those seen in the automa-
tion of job applicant screening,26 of which it is said 
that ‘blind confidence in automated e-recruitment 
systems could have a high societal cost, jeopardizing 
the right of individuals to equal opportunities in the 
job market’. This is a complex discussion and beyond 
the remit of this article.

Outside of medicine, the cutting edge of AI research 
is focused on systems that behave autonomously and 
continuously evolve strategies to achieve their goal 
(active learning), for example, mastering the game of 
Go,27 trading in financial markets,28 controlling data 
centre cooling systems29 or autonomous driving.30 31 
The safety issues of such actively learning autonomous 
systems have been discussed theoretically by Amodei 
et al32 and from this work we can identify potential 
issues in medical applications. Autonomous systems 

are long way off practical implementation in medicine, 
but one can imagine a future where ‘closed loop’ appli-
cations, such as subcutaneous insulin pumps driven by 
information from wearable sensors,33 or automated 
ventilator control driven by physiological monitoring 
data in intensive care,34 are directly controlled by AI 
algorithms.

These various applications of ML require different 
algorithms, of which there are a great many. Their 
performance is often very dependent on the precise 
composition of their training data and other param-
eters selected during training. Even controlling for 
these factors some algorithms will not produce iden-
tical decisions when trained in identical circumstances. 
This makes it difficult to reproduce research findings 
and will make it difficult to implement ‘off the shelf ’ 
ML systems. It is notable in ML literature that there 
is not yet an agreed way to report findings or even 
compare the accuracy of ML systems.35 36

Figure 1 summarises expected trends in ML 
research in medicine, over the short, medium and 
longer terms, with the focus evolving from reactive 
systems, trained to classify patients from gold stan-
dard cases, with a measurable degree of accuracy, to 
proactive autonomous systems which continuously 
learn from experience, whose performance is judged 
on outcome. Translation of ML research into clin-
ical practice requires a robust demonstration that 
the systems function safely, and with this evolution 
different quality and safety issues present themselves. 

QuaLIty and safety In ML systeMs
In an early AI experiment, the US army used ML to 
try to distinguish between images of armoured vehi-
cles hidden in trees versus empty forests.1 After initial 
success on one set of images, the system performed 
no better than chance on a second set. It was subse-
quently found that the positive training images had 
all been taken on a sunny day, whereas it had been 
cloudy in the control photographs—the machine had 
learnt to discriminate between images of sunny and 
cloudy days, rather than to find the vehicles. This 
is an example of an unwittingly introduced bias in 
the training set. The subsequent application of the 
resulting system to unbiased cases is one cause of a 
phenomenon called ‘distributional shift’.

short-term issues
Distributional shift
Distributional shift32 is familiar to many clinicians, 
who find previous experience inadequate for new 
situations, and have to operate, cautiously, outside of 
a ‘comfort zone’. ML systems can be poor at recog-
nising a relevant change in context or data, and this 
results in the system confidently continuing to make 
erroneous predictions based on ‘out-of-sample’ 
inputs.32
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A mismatch between training and operational data 
can be inadvertently introduced, most commonly, as 
above, by deficiencies in the training data, but also 
by inappropriate application of a trained ML system 
to an unanticipated patient context. Such situations 
can be described as ‘out-of-sample’ input, and the 
need to cater for many such edge cases is described 
as the ‘Frame problem’25 of AI.

The limited availability of high quality data 
for training, correctly labelled with the outcome 
of interest, is a recurrent issue in ML studies. For 
example, when data are available it may have been 
collected as ‘interesting cases’ and not representative 
of the normal, leading to a sample selection bias.6 
In another example, the outcome may be poorly 
defined (eg, pneumonia) and variably assigned by 
experts, leading to a training set with poor reproduc-
ibility, and no ‘ground truth’ to learn associations.9

Inappropriate application of an ML system to a 
different context can be quite subtle. De Fauw et 
al7 discovered their system worked well on scans 
from one OCT machine, but not another, necessi-
tating a process to normalise the data coming from 
each machine, before a diagnostic prediction could 
be made. Similarly we anticipate that the system 
for diagnosing skin malignancy,6 which was trained 
on pictures of lesions biopsied in a clinic, may not 
perform as well when applied to the task of screening 
the general population where the appearance of 
lesions, and patient’s risk profile, is different.

In some cases, distributional shift is introduced 
deliberately. ML systems perform best when index 
cases and controls are approximately equal in the 
training set,37 and this is not common in medi-
cine. Imbalanced data sets may be ‘rebalanced’ 
by under-sampling or over-sampling, and without 
correction the resulting system will tend to over-di-
agnose the rare case.38 Alternative approaches may 
‘boost’ the significance of true positive or false nega-
tive cases depending on the application, which can 
lead, for example, to a model good for screening but 
poor for diagnosis.39

Over time disease patterns change, leading to a 
mismatch between training and operational data. 
The effect of this on ML models of acute kidney 
injury was studied by Davis et al,40 who found that 
over time decreasing AKI incidence was associated 
with increasing false positives from their ML system, 
an example of prediction drift.

There are many different ML algorithms, and 
they perform differently under the challenge of 
distributional shift, and this ‘may lead to arbitrary 
and sometimes deleterious effects that are costly to 
diagnose and address’.41 It is notable however that 
the sepsis detection system mentioned above20 has 
been successfully tested in the different context 
of a community hospital5 despite being trained in 
intensive care, a potential distributional shift, and 

thus shows some capability of adaptation through 
‘transfer learning’.38 42

Insensitivity to impact
In the comparison between ML systems and expert 
dermatologists performed by Esteva et al,6 both 
humans and machines find it difficult to discriminate 
between benign and malignant melanocytic lesions, 
but humans ‘err on the side of caution’ and over-diag-
nose malignancy. The same pattern was not observed 
for relatively benign conditions. While this decreases 
a clinician’s apparent accuracy, this behaviour alter-
ation in the face of a potentially serious outcome is 
critical for safety, and something that the ML system 
has to replicate. ML systems applied to clinical care 
should be trained not just with the end result (eg, 
malignant or benign), but also with the cost of both 
potential missed diagnoses (false negatives) and 
over-diagnosis (false positives).43 During learning 
ML systems assess and maximise their performance 
based on a measure of accuracy obtained on predic-
tions made from training data. Often this accuracy 
measure does not take into account real-world 
impacts, and as a result the ML system can be opti-
mised for the wrong task, and comparisons to clini-
cian’s performance flawed.

Black box decision-making
One of the key differences between rule-based 
systems and the multitude of ML algorithms is the 
degree to which the resulting prediction can be 
explained in terms of its inputs. Some ML algo-
rithms, particularly those based on artificial neural 
networks, make inscrutable predictions and for 
these algorithms it is harder to detect error or 
bias. This issue was demonstrated by the armoured 
vehicle detection system developed by the US army 
described above1 and has been most studied in ML 
systems relying on image analysis.6 9 To mitigate this, 
such systems can produce ‘saliency maps’ which 
identify the areas of, for example, the skin lesion6 
or the chest X-rays,9 which most contributed to their 
prediction. However, outside of image analysis this 
inscrutability is harder to manage, and detection of 
bias in black box algorithms requires careful statis-
tical analysis of the behaviour of the model in the 
face of changing inputs.44 45

Unsafe failure mode
The concept of confidence of prediction was 
mentioned in the context of distributional shift 
above. As with interpretability, not all ML algorithms 
produce estimates of confidence. If ML systems are 
opaque to interpretation, it becomes essential for the 
clinician to be aware whether the system believes its 
prediction is a sensible one. If the system’s confi-
dence is low, best practice design would be to fail-
safe46 and refuse to make a prediction either way. 
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Table 1 A general framework for considering clinical artificial intelligence (AI) quality and safety issues in medicine

Issue Summary Example

Short term 
  Distributional shift A mismatch between the data or environment the 

system is trained on and that used in operation, due 
to bias in the training set, change over time, or use of 
the system in a different population, may result in an 
erroneous ‘out of sample’ prediction.

The accuracy of a system which predicts impending acute 
kidney injury based on other health records data, became 
less accurate over time as disease patterns changed.40

  Insensitivity to impact A system makes predictions that fail to take into account 
the impact of false positive or false negative predictions 
within the clinical context of use.

An unsafe diagnostic system is trained to be maximally 
accurate by correctly diagnosing benign lesions at the 
expense of occasionally missing malignancy.6

  Black box decision making A system’s predictions are not open to inspection or 
interpretation and can only be judged as correct based 
on the final outcome.

A X-Ray analysis AI system could be inaccurate in certain 
scenarios because of a problem with training data, but 
as a black box this is not possible to predict and will only 
become apparent after prolonged use.9

  Unsafe failure mode A system produces a prediction when it has no 
confidence in the prediction accuracy, or when it has 
insufficient information to make the prediction.

An unsafe AI decision support system may predict a low 
risk of a disease when some relevant data is missing. 
Without any information about the prediction confidence, 
a clinician may not realise how untrustworthy this 
prediction is.46

Medium term 
  Automation complacency A system’s predictions are given more weight than they 

deserve as the system is seen as infallible or confirming 
initial assumptions.

The busy clinician ceases to consider alternatives 
when a usually predictable AI system agrees with their 
diagnosis.48

  Reinforcement of outmoded 
practice

A system is trained on historical data which reinforces 
existing practice, and cannot adapt to new developments 
or sudden changes in policy

A drug is withdrawn due to safety concerns but the 
AI decision support system cannot adapt as it has no 
historical data on the alternative.

  Self-fulfilling prediction Implementation of a system indirectly reinforces the 
outcome it is designed to detect.

A system trained on outcome data, predicts that certain 
cancer patients have a poor prognosis. This results in 
them having palliative rather than curative treatment, 
reinforcing the learnt behaviour.

Long term 
  Negative side effects System learns to perform a narrow function that fails 

to take account of some wider context creating a 
dangerous unintended consequence.

An autonomous ventilator derives a ventilation strategy 
that successfully maintains short term oxygenation at the 
expense of long-term lung damage.34

  Reward hacking A proxy for the intended goal is used as a ‘reward’ and a 
continuously learning system finds an unexpected way to 
achieve the reward without fulfilling the intended goal.

An autonomous heparin infusion finds a way to control 
activated partial thromboplastin time (aPTT) at the time 
of measurement without achieving long-term control.23

  Unsafe exploration An actively learning system begins to learn new 
strategies by testing boundary conditions in an unsafe 
way.

A continuously learning autonomous heparin infusion 
starts using dangerously large bolus doses to achieve 
rapid aPTT control.23

  Unscalable oversight A system requires a degree of monitoring that becomes 
prohibitively time consuming to provide.

An autonomous subcutaneous insulin pump requires the 
patient to provide exhaustive detail of everything they 
have eaten before it can adjust the insulin regime.33

A similar fail-safe may be needed if the system has 
insufficient input information or detects an ‘out-of-
sample’ situation as described above.46

Medium-term issues
Automation complacency
As humans, clinicians are susceptible to a range 
of cognitive biases which influence their ability 
to make accurate decisions.47 Particularly rele-
vant is ‘confirmation bias’ in which clinicians give 
excessive significance to evidence which supports 
their presumed diagnosis and ignore evidence 
which refutes it.25 Automation bias48 describes the 
phenomenon whereby clinicians accept the guid-
ance of an automated system and cease searching for 
confirmatory evidence (eg, see Tsai et al49), perhaps 

transferring responsibility for decision-making onto 
the machine—an effect reportedly strongest when a 
machine advises that a case is normal.48 Automation 
complacency is a related concept48 in which people 
using imperfect DSS are least likely to catch errors if 
they are using a system which has been generally reli-
able, they are loaded with multiple concurrent tasks 
and they are at the end of their shift.

Automation complacency can occur for any type 
of decision support, but may be potentiated when 
combined with other pitfalls of ML described above. 
For example, given the sensitivity to distributional 
shift described, the usually reliable ML system that 
encounters an out-of-sample input may not ‘fail 
safely’ but continue confidently to make an erro-
neous prediction of low malignancy risk and not be 
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Box 1 - Quality control questions for short-term 
and medium-term issues in machine learning

Distributional shift
 ► Has the system been tested in diverse locations, 
underlying software architectures (such as electronic 
health records), and populations?

 ► How can we be sure the training data matches what we 
expect to see in real life and does not contain bias?

 – How can we be confident of the quality of the ‘labels’ 
the system is trained on?

 – Do the ‘labels’ represent a concrete outcome (‘ground 
truth’) or a clinical opinion?

 – How has imbalance in the training set been 
addressed?

 – Is the system applied to the same diagnostic context 
that it was trained in?

 ► How is the system going to be monitored and 
maintained over time to adjust for prediction drift?

Insensitivity to impact
 ► Does the system adjust its behaviour (‘err on the side 
of caution’) where there are high impact negative 
outcomes?

 ► Can the system identify ‘out of sample’ input and 
adjust its confidence accordingly?

Black box decision-making, unsafe failure and 
automation complacency

 ► Are the system’s predictions interpretable?
 ► Does it produce an estimate of confidence?
 ► How is the certainty of prediction communicated to 
clinicians to avoid automation bias?

Reinforcement of outmoded practice and self-
fulfilling predictions

 ► How can it accommodate breaking changes to clinical 
practice?

 ► What aspects of existing clinical practice does this 
system reinforce?

questioned by the busy clinician who then ceases to 
consider alternatives.

Reinforcement of outmoded practice and self-fulfilling predictions
In the medium term, we expect to see systems 
emerging from research that use ML to recommend 
the most appropriate clinical actions, for example, 
by identifying patients who might benefit most from 
a specific treatment or for whom further referral and 
investigation is warranted.7

Such recommendation decision support already 
exists, but in systems whose behaviour is deter-
mined by explicitly designed rules. The shift to a 
data-driven approach introduces a new risk in the 
situation of a sudden change in clinical practice 
that requires the DSS to change, for example, a 
drug safety alert. While the rule-based system can 
be manually updated, as ML is predicated on the 
availability of appropriate data, it has the poten-
tial to reinforce outmoded practice, and a radical 
change that invalidates historical practice is difficult 
to absorb, as there are no prior data to retrain the 
system with. The need to periodically retrain and 
evaluate performance in response to technological 
evolution, new knowledge and protocol changes in 
medicine requires costly updating of gold standard 
data sets.

On the other hand, a related potential problem 
could arise in ML systems that are very frequently 
updated, and particularly those that continuously 
learn. Suppose a system predicts a prognosis, this 
may in turn influence therapy in a way that rein-
forces the prognosis and lead to a positive feedback 
loop. In this scenario, there is a self-fulfilling predic-
tion, which then may be further reinforced as the 
ML system learns.

Longer-term issues
Table 1 incorporates Amodei et al’s framework for 
safety in AI,32 which deals with issues more specific 
to continuously learning, autonomous systems. For 
obvious reasons, such systems will be challenging to 
deploy in the context of medicine and so their safety 
issues are less immediate. Rather than repeating 
Amodei et al’s detailed analysis,32 we describe these 
issues using hypothetical scenarios based on the 
research into personalised heparin dosing mentioned 
above23:

 ► Negative side effects: The target of maximising the time 
in the therapeutic window requires careful management 
of heparin infusions that delay administration of other 
medications

 ► Reward hacking: An automated system may find ways 
in which to ‘game’ the goals defined by the reward func-
tion. The heparin dosing system, for example, might 
stumble on a strategy of giving pulses of heparin, imme-
diately before activated partial thromboplastin time 
(aPTT) measurement, giving good short-term control, 

but without achieving the intended goal of stable long-
term control. This is known as ‘hacking the reward func-
tion’ or ‘wireheading’.32

 ► Unsafe exploration: As part of its continuous learning, 
the system may experiment with the dosing of heparin 
to try and improve its current behaviour. How do we set 
limits to prevent dangerous overdosing, and define what 
changes in strategy are safe for the system to ‘explore’50?

 ► Unscalable oversight: As the system is learning new strat-
egies for heparin management for novel patient groups, 
the management strategies it proposes require inconven-
iently frequent and expensive aPTT measurement.

At present these issues are merely theoretical in 
medicine, but they have been observed in ML test envi-
ronments51 and are increasingly becoming relevant in 
applications such as autonomous driving systems.31
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concLusIon
Developing AI in health through the application of 
ML is a fertile area of research, but the rapid pace of 
change, diversity of different techniques and multi-
plicity of tuning parameters make it difficult to get 
a clear picture of how accurate these systems might 
be in clinical practice or how reproducible they are 
in different clinical contexts. This is compounded by 
a lack of consensus about how ML studies should 
report potential bias, for which the authors believe 
the Standards for Reporting of Diagnostic Accu-
racy initiative52 could be a useful starting point. 
Researchers need also to consider how ML models, 
like scientific data sets, can be licensed and distrib-
uted to facilitate reproduction of research results in 
different settings.

As ML matures we suggest a set of short-term and 
medium-term clinical safety issues (see table 1) that 
need addressing to bring these systems from labo-
ratory to bedside. This framework is supported by 
a set of quality control questions (Box 1) that are 
designed to help clinical safety professionals and 
those involved in developing ML systems to identify 
areas of concern. Detailed mitigation of these issues 
is a large topic that cannot be addressed here, but is 
discussed by Amodei et al32 and Varshney et al.46

Implementation of ML DSS in the short term is likely 
to focus on diagnostic decision support. ML diag-
nostic decision support should be assessed in the same 
manner and with the same rigour as the development 
of a new laboratory screening test. Wherever possible 
a direct comparison should be sought to existing deci-
sion support or risk scoring systems—ideally through 
a randomised controlled trial as exemplified by Shima-
bukuro et al.42 53

As with all clinical safety discussions we need to 
maintain a realistic perspective. Suboptimal deci-
sion-making will happen with or without ML support, 
and we must balance the potential for improvement 
against the risk of negative outcomes.
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