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Sepsis is a global health priority of stag-
gering impact, resulting in at least 6 
million deaths worldwide each year and 
contributing to as many one half of all 
hospital deaths in the USA.1–4 Sepsis is 
also tremendously costly, as reflected in 
total healthcare expenditures,5 6 short-
term and long-term morbidity and 
mortality7–9 and the heavy burden placed 
on caregivers and society.10 11 Large-scale 
efforts, including those of the WHO and 
the Global Sepsis Alliance, have helped 
to elevate sepsis to a highly prominent 
concern visible to ‘the public, polit-
ical leaders and leaders of healthcare 
systems’.1 12 Emerging public awareness 
campaigns—for example, the Sepsis Alli-
ance’s ‘It’s About TIME’ motto empha-
sises Temperature, Infection, Mental 
decline and Extreme illness as concerning 
patient symptoms13—further drive home 
the need for timely and aggressive patient 
screening, identification and treatment. 
Together, these clarion calls highlight the 
need to leverage all available tools and 
modalities to enhance the earlier iden-
tification and treatment of patients to 
combat sepsis.

Not surprisingly, over the last decade, 
we have witnessed a rapid expansion in 
the number of electronic sepsis alert tools 
in development or use, particularly in 
locales that have also seen widespread 
deployment of modern electronic health 
record (EHR) systems.14 In some cases, 
simpler rule-based sepsis screening or 
prognostication tools, built around the 
systemic inflammatory response syndrome 
(SIRS) or quick Sepsis-related Organ 
Failure Assessment (qSOFA) criteria,15–18 
have been electronically implemented as 
sepsis ‘sniffers’ that offload the burden of 
sepsis detection in patients who already 
meet relevant clinical criteria.14 In other 
cases, the role of these simpler ‘predictive’ 
models has been questioned alongside 
the rise of machine learning (ML)-driven 

sepsis predictive models.19–24 Numerous 
ML-based sepsis predictive models have 
already demonstrated excellent predictive 
performance with still many others being 
designed and tested today.20–25

ML algorithms are particularly useful 
in sifting through large, complex and 
heterogeneous data in order to maxi-
mise the signal within the noise of messy 
EHR data.26 27 By rapidly peering through 
vast swaths of data, these algorithms can 
bolster model discrimination—most 
often quantified as c-statistic values—and 
improve model calibration.28 29 Although 
many existing studies trumpet modest 
increases in c-statistics, improving the 
positive predictive value (PPV) is also 
critical because it describes the likelihood 
that a patient triggering an alert will actu-
ally have the outcome of interest. Thus, it 
can be used to estimate the clinical burden 
associated with predictive model alerts 
when embedded in practice. In some 
cases, partly because of poor PPV perfor-
mance, reports reveal that sepsis alerting 
tools have already been shut off.30

Understanding the impact of predictive 
model performance in the context of clin-
ical workflow is essential because these 
tools do not exist in a vacuum. Instead, 
predictive models must be paired with 
effective interventions in a prediction-ac-
tion or afferent-efferent dyad.31 32 The 
term ‘precision delivery’ was recently 
coined to reflect the need for risk tools 
to be embedded within clinical delivery 
systems to facilitate targeted and person-
alised care.33 Decisions on what actions 
should follow a predictive model alert 
can be highly variable. When faced with a 
predictive model of given characteristics, 
operational leaders must make decisions 
related to the tool’s use in the areas of 
alert delivery modalities and thresholds, 
end-user staffing and interfaces, clinical 
decision support, workflow changes and/
or educational programming. For sepsis, 
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multifaceted interventions that coordinate improve-
ments across several clinical domains have become 
the norm and, in nearly all cases, have already proven 
highly effective for improving mortality.34–37

Against this background, what is the evidence 
showing that electronic sepsis alert tools benefit 
patients? Several prior studies suggest that their use 
is associated with incredible benefits in outcomes. For 
example, when embedded within clinical workflow 
redesign, a system incorporating electronic surveil-
lance criteria resulted in a stunning 53% reduction in 
sepsis mortality.38 A more complex ML-driven sepsis 
predictive model similarly resulted in a 58% reduc-
tion in hospital mortality, with no associated increase 
in adverse events.39 In a condition as deadly as sepsis 
and with purported effects of this magnitude, it comes 
as no surprise that many hospitals and health systems 
are racing towards implementation of electronic alerts 
and predictive models. However, not all studies have 
shown such promising results.14 40–42

In this issue, an important study by Downing and 
others43 helps to enrich our understanding of the poten-
tial utility of electronic sepsis alert tools. The authors 
modified a previously developed severe sepsis identi-
fication algorithm44 based on SIRS, suspected infec-
tion and organ dysfunction criteria, to enhance PPV. 
They implemented this EHR-based alert for patients in 
medical, surgical and stepdown units, excluding those 
in intensive care units or on comfort care. In coordi-
nation with hospital leadership, they carefully devel-
oped a standardised workflow following the alerts and 
educated the relevant clinical teams. When alert criteria 
were met, a circulating ‘crisis’ nurse, and in some cases 
the patient’s treating physician, would receive a pager 
alert with the intended goal of having clinicians assess 
the patient at the bedside and implement appropriate 
orders within an order set. Overall, their work reflects 
the type of careful approach needed to implement an 
effective and sustainable prediction-action dyad.

What makes this study particularly valuable is 
that the authors implemented the sepsis alerts in a 
randomised fashion. Among patients meeting alert 
criteria, some of their treating clinicians received 
a paged alert (intervention, n=595) whereas other 
patients had a ‘silent’ alert invisible to their treating 
teams (control, n=528). As a result, the study find-
ings should reflect the causal effect of the sepsis alert 
and workflow itself, rather than other exogenous or 
confounding factors that often impact more common-
place before-after studies.45 46

Their randomisation process succeeded in achieving 
intervention and control groups that shared similar 
baseline characteristics. However, their sepsis alert 
did not significantly affect the primary outcome of 
a new antibiotic order placed within 3 hours of the 
alert (35.0% vs 36.7%). Nor were there any signif-
icant differences between intervention and control 
patients in a diverse set of secondary care processes 

and outcomes including lactate orders, intravenous 
fluid administration, blood cultures, prolonged length 
of stay, intensive care transfer or hospital mortality. 
Even while this iteration of their tool had no signifi-
cant effect on sepsis care processes or outcomes, iron-
ically, the study was cut short by hospital leadership 
who requested that the alert be turned on for all users.

Many factors may have contributed to the lack of 
benefit seen with the intervention. For example, in 
both groups, two-thirds of patients were already 
being treated with antibiotics at the time of the alert. 
However, the study also did not demonstrate signif-
icant differences in intravenous fluid administration 
or lactate orders between groups. The alert was also 
designed primarily to improve detection of severe 
sepsis, rather than to predict onset, limiting the tool’s 
utility for pre-empting severe sepsis with clinical inter-
vention. The authors found that alert-driven work-
flows were inconsistently applied by clinicians and 
wisely conducted surveys to better understand their 
findings. Of physicians surveyed who had cared for a 
patient with sepsis, the majority felt that the alert did 
not flag an important change in a patient’s condition 
that required new action.

Sepsis is a deadly, prevalent and costly healthcare 
problem that demands urgent attention. Promising 
electronic alert tools are increasingly being imple-
mented in the hopes that they can drive improved 
patient outcomes. However, as this study and others 
show, well-designed tools demonstrating excellent in 
silico performance are not guaranteed to improve care 
or outcomes. In real-world practice, some may even 
result in unintended consequences like alert fatigue,47 
distraction48 and wasted resources. Given the tremen-
dous heterogeneity in the electronic tools themselves 
as well as in the clinical settings in which they are 
implemented, we expect variability in reported bene-
fits to persist. Rigorous study designs, as well as the 
confidence to publish ‘negative’ results, are essential 
for identifying effective and sustainable interventions 
that benefit our patients with sepsis.
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