Appendix 1: Detailed Summary of Systematic Review | Study,
Methodologic
Feature
Score,
Funding | Type of
Analysis,
Modelling
Method | Effectiveness
Data Safety
Improvement
Strategies | Cost Data | Cohort and
Time Horizon
for Analysis | Main Outcome
Measures and
Discounting | Results of Base
Case Analysis | Results:
Sensitivity
Analysis | Limitations | | |--|---|---|---|---|---|---|---|--|--| | Adverse Drug E | Adverse Drug Events (ADEs) | | | | | | | | | | Karnon
2009 [1]
Methodologic
feature score
= 27
Funding not
stated | Cost utility Decision analytic model | One randomized trial of pharmacist-led medication reconciliation [2], non-randomized trials [3-6] Pharmacist-led medication reconciliation | Case control studies [7-9]; Case series with attributable costs [9] | Patients at
risk of
medication
error due to
lack of
medication
reconciliation | Cost per
Quality
Adjusted Life
Year (QALY)
gained
No discounting | Pharmacist-led medication reconciliation is a dominant strategy | Pharmacist-led medication reconciliation remained the dominant strategy as long as a value is attached to a QALY gained | Effectiveness based on single small randomized controlled trial; no utility measures available so these were estimated | | | Study,
Methodologic
Feature
Score,
Funding | Type of
Analysis,
Modelling
Method | Effectiveness
Data Safety
Improvement
Strategies | Cost Data | Cohort and
Time Horizon
for Analysis | Main Outcome
Measures and
Discounting | Results of Base
Case Analysis | Results:
Sensitivity
Analysis | Limitations | |---|---|---|-------------------------------|--|--|--|--|--| | Transfusion-rel | ated Adverse Eve | nts (AE) in critically ill | patients | | | | | | | Shermock
2005 [10]
Drummond
Checklist
score = 28
Funding not
stated | Cost effectiveness Decision analytic model | Randomized control trial [11] Use of EPO in preventing transfusion-related AEs | Randomized control trial [11] | Patients at
risk of
contracting
transfusion-
related AEs | Cost to avoid one transfusion-related AE No discounting | Incremental cost:
\$4,700,000 to avoid
one transfusion-
related AE,
\$25,600,000 to
avoid one serious
transfusion-related
AE, and
\$71,800,000 to
avoid a likely fatal
transfusion-related
AE | Results
withstood
extensive
sensitivity
analysis | Single
estimate of
effectiveness | | Study,
Methodologic
feature score,
Funding | Type of
Analysis,
Modelling
Method | Effectiveness Data Safety Improvement Strategies | Cost Data | Cohort and Time
Horizon for
Analysis | Main
Outcome
Measures
and
Discounting | Results of Base
Case Analysis | Results:
Sensitivity
Analysis | Limitations | |--|---|---|---|--|---|--|--|-------------| | Catheter-related b | oloodstream infe | ections (CRBSI) | | | | | | • | | Maenthaisong
2006 [12]
Methodologic
feature score =
25
Funded by
Thailand
Research Fund | Cost-
effectiveness
Decision
analytic
model | Randomized control trials from a meta-analysis [13] | Published
reports from
national health
security office
[14] | Catheterized patients at Siriraj hospital, Thailand, for the duration of hospitalization | Incidence of catheter-related bloodstream infections (CRBSI) and death related to CRBSI No discounting | Chlorhexidine gluconate showed a cost savings of 304.49 Baht in central line catheter sites and 13.56 Baht per catheter in peripheral line catheter site with a 1.16% decrease in incidence of CRBSI and a 0.32% decrease in death | Chlorhexidine gluconate increased direct medical costs by 3.29 Baht. Cost of CRBSI was the cost driver in worst-case scenario, but did not increase rate of CRBSI nor death due to CRBSI | None listed | | Study,
Methodologic
feature score,
Funding | Type of
Analysis,
Modelling
Method | Effectiveness Data Safety Improvement Strategies | Cost Data | Cohort and Time
Horizon for
Analysis | Main Outcome Measures and Discounting | Results of Base
Case Analysis | Results:
Sensitivity
Analysis | Limitations | |--|---|--|---|--|--|--|--|--| | Central Line Asso | ciated Blood St | ream Infection (CL | ABSI) | | | | | | | Waters 2011 [15] Methodologic feature score = 20 Funded by Blue Cross Blue Shield of Michigan through the Michigan Health and Hospital Association | Cost-
effectiveness
Decision
analytic
model | Interrupted time
series [16] | Activity-based
Costing through
interviews with
staff | Patients at risk of CLABSIs Three year time horizon | Cases of
CLABSI
averted by
the
intervention
for each
hospital
No
discounting | Intervention cost was about \$3,375 per infection averted and considered economically dominant | If the median hospital infection rate was used as the main outcome rather than the mean then cost per infection averted is \$4,725 | Results may not be generalizable outside of Michigan and did not include longer term health care costs | | Study,
Methodologic
feature
score,
Funding | Type of
Analysis,
Modelling
Method | Effectiveness Data
Safety Improvement
Strategies | Cost Data | Cohort and
Time Horizon
for Analysis | Main Outcome
Measures and
Discounting | Results of Base
Case Analysis | Results:
Sensitivity
Analysis | Limitations | |---|---|---|---|---|--|--|--|--| | Retained Surg | ical Foreign Bo | dies | | | | | | | | Regenbogen
2009 [17]
Methodologic
feature score
score = 24
Funding not
stated | Cost effectivenes s analysis Decision analytic model | Randomized control study of bar coded sponges [18] and epidemiologic studies providing estimates of sensitivity and specificity of standard counts and universal radiography [19,20] Comparing standard counting against alternative strategies: universal or selective x-ray, bar-coded sponges (BCS), and radiofrequencytagged (RF) sponges | Published literature [21,22] OR managers at the hospital, University of California, San Francisco Medical Center, and the Hospital of the University of Pennsylvania | Average risk of inpatient operation from published literature [18-20,23] Duration of hospitalization | Retained sponges incidence and cost-effectiveness ratios for each strategy No discounting | Standard count
\$1,500 per retained
sponge averted;
Bar-coded sponges
\$95,000 per
retained sponges
averted;
Routine
intraoperational
radiology over \$1
million per retained
sponges averted | Results were robust over the plausible range of effectiveness assumptions, but sensitive to cost | Evidence of effectiveness for some comparisons within this analysis came from lower quality studies such as cadaver studies. | ## Reference List - Karnon J, Campbell F, Czoski-Murray C. Model-based cost-effectivness analysis of interventions aimed at preventing medication error at hospital admission (medicines reconciliation). J Eval Clin Pract 2009; 15: 299-306. - Kwan Y, Fernandes O, Nagge J et al. Implementation and a randomized controlled evaluation of pharmacists medication assessments in a surgical preadmission clinic. Pharmacotherapy 2005; 25: 1462. - 3. Bates DW, Leape LL, Petrycki S. Incidence and preventability of adverse drug events in hospitalized adults. J Gen Intern Med 1993; 8: 289-94. - 4. Mcfazdean E, Isles C, Moffar J et al. Is there a role for a prescribing pharmacist in preventing prescribing errors in the medical admissions ward? Pharmaceutical Journal 2003; 270: 896-9. - 5. Scarsi KK, Fotis MA, Noskin GA. Pharmacist participation in medical rounds reduces medication errors. Am J Health-Syst Pharm 2002; 59: 2089-92. - 6. Collins DJ, Nickless GD, Green CF. Medication histories: does anyone know what medicines a patients should be taking? International Journal of Pharmacy Practice 2004; 12: 173-8. - 7. Bates DW, Spell N, Cullen DJ et al. The costs of adverse drug events in hospitalized patients. Adverse Drug Events Prevention Study Group 1997; 307-11. - 8. Pinilla J, Murillo C, Carrasco F et al. Case-Control analysis of the financial cost of medication errors in hospitalized patients. European Journal of Health Economics 2006; 7: 66-71. - 9. Classen DC. Adverse drug events in hospitalized patients: excess length of stay, extra costs, and attributable mortality. JAMA 1997; 277: 301-6. - Shermock KM, Horn E, Lipsett PA et al. Number needed to treat and cost of recombinant human erythropoeitin to avoid one transfusion-related adverse event in critically ill patients. Crit Care Med 2005; 33: 497-503. - 11. Corwin HL, Gettinger A, Pearl RG et al. Efficacy of reconbinant human erythropoietin in critically ill patients. JAMA 2002; 288: 2827-35. - 12. Maenthaisong R, Chaiyakunapruk N, Thamlikitkul V. Cost-effectiveness analysis of chlorhexidine gluconate compared with povidone-iodine solution for catheter-site care in Siriraj hospital, Thailand. J Med Assoc Thai 2006; 89: S94-S101. - 13. Chaiyakunapruk N, Veenstra DL, Lipsky BA et al. Chlorhexidine compared with povidone-iodine solution for vascular catheter-site care: A meta-analysis. Ann Intern Med 2002; 136: 792-801. - National Health Secutiry Office. J Diagnosis Related Group Relative Weight 2002-2003. 182-188. 2003. - 15. Waters HR, Korn R Jr., Colantuoni E et al. The business case for quality: Economic analysis of the Michican Keyston patient safety program in ICUs. Am J Med Qual 2011; 26: 333-9. - Pronovost P, Needleman J, Berenholtz SM et al. An intervention to reduce catheter-related bloodstream infections in the ICU. N Engl J Med 2006; 355: 2725-32. - 17. Regenbogen SE, Greenberg CC, Resch SC et al. Prevention of retained surgical sponges: A decision-analytic model predicting relative cost-effectiveness. Surgery 2009; 145: 527-35. - 18. Greenberg CC, Diaz-Flores R, Lipsitz SR et al. Bar-coding surgical sponges to improve safety: A randomized control trial. Ann Surg 2008; 247: 612-6. - 19. Cima RR, Kollengode A, Garnatz J et al. Incidence and characteristics of potential and actual retained foreign object events in surgical patients. J Am Coll Surg 2008; 207: 80-7. - 20. Revesz G, Siddiqi TS, Buchheit WA et al. Detection of retained surgical sponges. Radiology 1983; 149: 411-3. - 21. Gawande AA, Studdert DM, Orav EJ et al. Risk factors for retained instruments and sponges after surgery. N Engl J Med 2003; 348: 229-35. - 22. Egorova NN, Moskowits A, Gelijins A et al. Managing the prevention of retained surgical instruments. What is the value of counting? Ann Surg 2008; 247: 13-8. - 23. Forgue E, Aimes A. Les "Pieges" de la Chirurgie, Paris: Masson et Cie, 1939.