
Appendix: Derivation of the bound for Q 

In the model, the hospital mortality rate is partitioned into two components: 
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Suppose that X denotes the case-mix for a hospital, and let M(X) be the expected mortality rate for a 

hospital with case-mix X: i.e. ( ) ( )XMEXM |= . The SMR is
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mortality explained by case-mix. 

With these notations, the conditional variance formula [1] may be applied to give: 
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The first assumption mentioned in the text may be formulated as:   

 A1: For given case-mix, X, the components U and V are conditionally independent. 

Under A1 the conditional covariance formula [1] implies 
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The second assumption is: 

 A2: The conditional variances ( )XV |var and ( )XM |var  are constant for all values of the 

 case-mix X. 

Under (A2), the conditional variances can be taken outside the expectation operators in (a), (b) and (c) 

leading to: 
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=+ XMXMt where t is the coefficient of variation of the 

quantity ( ) 1−
XM . It follows from (e), (f) and (g) that
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which is the result used in the paper. 

Now replace condition A2 by 

A2´: For some constant K, ( ) ( )2
|var XKMXM = . Also assume that ( )XV |var is non-decreasing 

as ( )XM increases. 

The effect of using A2´ in place of A2 is to replace (e) and (f) above by 
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From which we have ( ) ( )[ ] ( )[ ]212

2
EE1

1
XMXMr

R
Q

M

V −
−

−σ

σ
< . 

Using a delta technique, ( )[ ]1
E

−
XM may be approximated as ( )( ) ( )22121 1var1 McRXM +µ=µ+µ −−−

 

where ( ) MXM EE ==µ is the mean hospital mortality rate. Similarly, ( )[ ] ( )22
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Thus, to leading order in cM, we have the following bound 

( )( )222

2
3

2
11

1
rcR

R
Q M

M

V −+×
−σ

σ
<     (2´) 



In the base-case (R2
 = 0.8, cM = 0.2) this implies an increase of up to 5% in the previous bound for Q 

– i.e. in comparison with (2) – and up to 10% in the bound for Q2. However, the increase will be 

attenuated by the factor ( )21 r− and disappears altogether if 5% of the variation in preventable 

mortality rates can be explained by case-mix (i.e. r
2
 = 0.05). In any case it is scarcely large enough to 

disturb the conclusions of the paper. 
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