Skip to main content

Advertisement

Log in

The Role of Diagnostic Stewardship in Clostridioides difficile Testing: Challenges and Opportunities

  • Healthcare Associated Infections (G Bearman and D Morgan, Section Editors)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Accurate and timely diagnosis of Clostridioides difficile infection (CDI) is imperative to prevent C. difficile transmission and reduce morbidity and mortality due to CDI, but CDI laboratory diagnostics are complex. The purpose of this article is to review the role of laboratory tests in the diagnosis of CDI and the role of diagnostic stewardship in optimization of C. difficile testing.

Recent Findings

Results from C. difficile diagnostic tests should be interpreted with an understanding of the strengths and limitations inherent in each testing approach. Use of highly sensitive molecular diagnostic tests without accounting for clinical signs and symptoms may lead to over-diagnosis of CDI and increased facility CDI rates. Current guidelines recommend a two-step, algorithmic approach for testing. Diagnostic stewardship interventions, such as education, order sets, order search menus, reflex orders, hard and soft stop alerts, electronic references, feedback and benchmarking, decision algorithms, and predictive analytics, may help improve use of C. difficile laboratory tests and CDI diagnosis. The diagnostic stewardship approaches with the highest reported success rates include computerized clinical decision support (CCDS) interventions, face-to-face feedback, and real-time evaluations.

Summary

CDI is a clinical diagnosis supported by laboratory findings. Together, clinical evaluation combined with diagnostic stewardship can optimize the accurate diagnosis of CDI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. CDC. Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019.

  2. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372(9):825–34.

    CAS  PubMed  Google Scholar 

  3. Burnham CA, Carroll KC. Diagnosis of Clostridium difficile infection: an ongoing conundrum for clinicians and for clinical laboratories. Clin Microbiol Rev. 2013;26(3):604–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rodriguez C, van Broeck J, Taminiau B, Delmée M, Daube G. Clostridium difficile infection: early history, diagnosis and molecular strain typing methods. Microb Pathog. 2016;97:59–78.

    CAS  PubMed  Google Scholar 

  5. Dubberke ER, Han Z, Bobo L, Hink T, Lawrence B, Copper S, et al. Impact of clinical symptoms on interpretation of diagnostic assays for Clostridium difficile infections. J Clin Microbiol. 2011;49(8):2887–93.

    PubMed  PubMed Central  Google Scholar 

  6. CDC. 2017 Annual report for the emerging infections program for Clostridioides difficile infection. In: Healthcare-Associated Infections-Community Interface (HAIC). CDC. 2019. https://www.cdc.gov/hai/eip/Annual-CDI-Report-2017.html. Accessed 31 Jul 2019.

  7. Kraft CS, et al. A laboratory medicine best practices systematic review and meta-analysis of nucleic acid amplification tests (NAATs) and algorithms including NAATs for the diagnosis of Clostridioides (Clostridium) difficile in Adults. Clin Microbiol Rev. 2019;32:3.

    Google Scholar 

  8. Kwon JH, Olsen MA, Dubberke ER. The morbidity, mortality, and costs associated with Clostridium difficile infection. Infect Dis Clin N Am. 2015;29(1):123–34.

    Google Scholar 

  9. Ahmad SM, Blanco N, Dewart CM, Dobosz A, Malani AN. Laxative use in the setting of positive testing for Clostridium difficile infection. Infect Control Hosp Epidemiol. 2017;38(12):1513–5.

    PubMed  Google Scholar 

  10. Kwon JH, et al. Evaluation of correlation between pretest probability for Clostridium difficile infection and Clostridium difficile enzyme immunoassay results. J Clin Microbiol. 2017;55(2):596–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kwon JH, Reske KA, Hink T, Jackups R, Burnham CD, Dubberke ER. Impact of an electronic hard-stop clinical decision support tool to limit repeat Clostridioides difficile toxin enzyme immunoassay testing on test utilization. Infect Control Hosp Epidemiol. 2019;40(12):1423–6.

    PubMed  Google Scholar 

  12. Fleming MS, Hess O, Albert HL, Styslinger E, Doll M, Nguyen HJ, et al. Test stewardship, frequency and fidelity: impact on reported hospital-onset Clostridioides difficile. Infect Control Hosp Epidemiol. 2019;40(6):710–2.

    PubMed  Google Scholar 

  13. Dubberke, E.R. and C.D. Burnham. Diagnosis of Clostridium difficile infection: treat the patient, not the test. JAMA Intern. Med, 2015;175(11): 1801-2.

  14. Johnson, S., The rise and fall and rise again of toxin testing for the diagnosis of C. difficile infection. Clin Infect Dis. 2019;69(10):1675-1677.

  15. Peterson LR, Robicsek A. Does my patient have Clostridium difficile infection? Ann Intern Med. 2009;151(3):176–9.

    PubMed  Google Scholar 

  16. Eastwood K, et al. Comparison of nine commercially available Clostridium difficile toxin detection assays, a real-time PCR assay for C. difficile tcdB, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture methods. J Clin Microbiol. 2009;47(10):3211–7.

    PubMed  PubMed Central  Google Scholar 

  17. de Jong E, de Jong AS, Bartels CJ, van der Rijt-van den Biggelaar C, Melchers WJ, Sturm PD. Clinical and laboratory evaluation of a real-time PCR for Clostridium difficile toxin A and B genes. Eur J Clin Microbiol Infect Dis. 2012;31(9):2219–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kvach EJ, Ferguson D, Riska PF, Landry ML. Comparison of BD GeneOhm Cdiff real-time PCR assay with a two-step algorithm and a toxin A/B enzyme-linked immunosorbent assay for diagnosis of toxigenic Clostridium difficile infection. J Clin Microbiol. 2010;48(1):109–14.

    CAS  PubMed  Google Scholar 

  19. Planche T, Wilcox M. Reference assays for Clostridium difficile infection: one or two gold standards? J Clin Pathol. 2011;64(1):1–5.

    CAS  PubMed  Google Scholar 

  20. Polage CR, Gyorke CE, Kennedy MA, Leslie JL, Chin DL, Wang S, et al. Overdiagnosis of Clostridium difficile infection in the molecular test era. JAMA Intern Med. 2015;175(11):1792–801.

    PubMed  PubMed Central  Google Scholar 

  21. Garvey MI, et al. Can a toxin gene NAAT be used to predict toxin EIA and the severity of Clostridium difficile infection? Antimicrob Resist Infect Control. 2017;6:127.

    PubMed  PubMed Central  Google Scholar 

  22. Kociolek LK. Strategies for optimizing the diagnostic predictive value of Clostridium difficile molecular diagnostics. J Clin Microbiol. 2017;55(5):1244–8.

    PubMed  PubMed Central  Google Scholar 

  23. Moehring RW, Lofgren ET, Anderson DJ. Impact of change to molecular testing for Clostridium difficile infection on healthcare facility-associated incidence rates. Infect Control Hosp Epidemiol. 2013;34(10):1055–61.

    PubMed  PubMed Central  Google Scholar 

  24. Longtin Y, Trottier S, Brochu G, Paquet-Bolduc B, Garenc C, Loungnarath V, et al. Impact of the type of diagnostic assay on Clostridium difficile infection and complication rates in a mandatory reporting program. Clin Infect Dis. 2013;56(1):67–73.

    PubMed  Google Scholar 

  25. Albert K, Ross B, Calfee DP, Simon MS. Overreporting healthcare-associated C. difficile: a comparison of NHSN LabID with clinical surveillance definitions in the era of molecular testing. Am J Infect Control. 2018;46(9):998–1002.

    PubMed  Google Scholar 

  26. Christensen AB, Barr VO, Martin DW, Anderson MM, Gibson AK, Hoff BM, et al. Diagnostic stewardship of C. difficile testing: a quasi-experimental antimicrobial stewardship study. Infect Control Hosp Epidemiol. 2019;40(3):269–75.

    PubMed  Google Scholar 

  27. Dudeck MA, Weiner LM, Malpiedi PJ, et al. Risk adjustment for healthcare facility-onset C. difficile and MRSA bacteremia laboratory-identified event reporting in NHSN. CDC. 2013. https://www.cdc.gov/nhsn/pdfs/mrsa-cdi/RiskAdjustment-MRSA-CDI.pdf Accessed 31 Jul 2019.

  28. Marra AR, Edmond MB, Ford BA, Herwaldt LA, Algwizani AR, Diekema DJ. Failure of risk-adjustment by test method for C. difficile laboratory-identified event reporting. Infect Control Hosp Epidemiol. 2017;38(1):109–11.

    PubMed  Google Scholar 

  29. Kong, L.Y., K. Davies, and M.H. Wilcox. The perils of PCR-based diagnosis of Clostridioides difficile infections: painful lessons from clinical trials. Anaerobe. 2019;60:102048.

    PubMed  Google Scholar 

  30. McDonald LC, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1–e48.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Crobach MJT, Baktash A, Duszenko N, Kuijper EJ. Diagnostic guidance for C. difficile infections. Adv Exp Med Biol. 2018;1050:27–44.

    PubMed  Google Scholar 

  32. Avni T, Babich T, Ben-Zvi H, Atamna A, Yahav D, Shepshelovich D, et al. Molecular-based diagnosis of Clostridium difficile infection is associated with reduced mortality. Eur J Clin Microbiol Infect Dis. 2018;37(6):1137–42.

    CAS  PubMed  Google Scholar 

  33. Guh, A.Y., et al. Toxin enzyme immunoassays detect Clostridioides difficile infection with greater severity and higher recurrence rates. Clin Infect Dis. 2019;69(10):1667-1674.

    PubMed  Google Scholar 

  34. Kumar S, Pollok R, Muscat I, Planche T. Diagnosis and outcome of Clostridium difficile infection by toxin enzyme immunoassay and polymerase chain reaction in an island population. J Gastroenterol Hepatol. 2017;32(2):415–9.

    CAS  PubMed  Google Scholar 

  35. Origuen J, et al. Comparison of the clinical course of Clostridium difficile infection in glutamate dehydrogenase-positive toxin-negative patients diagnosed by PCR to those with a positive toxin test. Clin Microbiol Infect. 2018;24(4):414–21.

    CAS  PubMed  Google Scholar 

  36. Erb S, et al. Low sensitivity of fecal toxin A/B enzyme immunoassay for diagnosis of Clostridium difficile infection in immunocompromised patients. Clin Microbiol Infect. 2015;21(11):998.e9–998.e15.

    CAS  Google Scholar 

  37. Ashraf Z, Rahmati E, Bender JM, Nanda N, She RC. GDH and toxin immunoassay for the diagnosis of Clostridioides (Clostridium) difficile infection is not a ‘one size fit all’ screening test. Diagn Microbiol Infect Dis. 2019;94(2):109–12.

    CAS  PubMed  Google Scholar 

  38. Morgan DJ, Malani P, Diekema DJ. Diagnostic stewardship- leveraging the laboratory to improve antimicrobial use. JAMA. 2017;318(7):607–8.

    PubMed  Google Scholar 

  39. Yen C, Holtom P, Butler-Wu SM, Wald-Dickler N, Shulman I, Spellberg B. Reducing Clostridium difficile colitis rates via cost-saving diagnostic stewardship. Infect Control Hosp Epidemiol. 2018;39(6):734–6.

    PubMed  Google Scholar 

  40. Lambl BB, et al. Leveraging quality improvement science to reduce C. difficile infections in a community hospital. Jt Comm J Qual Patient Saf. 2019;45(4):285–94.

    PubMed  Google Scholar 

  41. Carter KA, Malani AN. Laxative use and testing for Clostridium difficile in hospitalized adults: an opportunity to improve diagnostic stewardship. Am J Infect Control. 2019;47(2):170–4.

    PubMed  Google Scholar 

  42. Kelly SG, Yarrington M, Zembower TR, Sutton SH, Silkaitis C, Postelnick M, et al. Inappropriate Clostridium difficile testing and consequent overtreatment and inaccurate publicly reported metrics. Infect Control Hosp Epidemiol. 2016;37(12):1395–400.

    PubMed  Google Scholar 

  43. Rock C, Pana Z, Leekha S, Trexler P, Andonian J, Gadala A, et al. National Healthcare Safety Network laboratory-identified Clostridium difficile event reporting: a need for diagnostic stewardship. Am J Infect Control. 2018;46(4):456–8.

    PubMed  PubMed Central  Google Scholar 

  44. Buckel WR, Avdic E, Carroll KC, Gunaseelan V, Hadhazy E, Cosgrove SE. Gut check: Clostridium difficile testing and treatment in the molecular testing era. Infect Control Hosp Epidemiol. 2015;36(2):217–21.

    PubMed  Google Scholar 

  45. Cardona DM, Rand KH. Evaluation of repeat Clostridium difficile enzyme immunoassay testing. J Clin Microbiol. 2008;46(11):3686–9.

    PubMed  PubMed Central  Google Scholar 

  46. Deshpande A, Pasupuleti V, Pant C, Hall G, Jain A. Potential value of repeat stool testing for Clostridium difficile stool toxin using enzyme immunoassay? Curr Med Res Opin. 2010;26(11):2635–41.

    PubMed  Google Scholar 

  47. Deshpande A, et al. Repeat stool testing to diagnose Clostridium difficile infection using enzyme immunoassay does not increase diagnostic yield. Clin Gastroenterol Hepatol. 2011;9(8):665–669.e1.

    PubMed  Google Scholar 

  48. Drees M, Snydman DR, O’Sullivan CE. Repeated enzyme immunoassays have limited utility in diagnosing Clostridium difficile. Eur J Clin Microbiol Infect Dis. 2008;27(5):397–9.

    CAS  PubMed  Google Scholar 

  49. van Prehn J, Vandenbroucke-Grauls CM, van Beurden Y, van Houdt R, Vainio S, Ang CW. Diagnostic yield of repeat sampling with immunoassay, real-time PCR, and toxigenic culture for the detection of toxigenic Clostridium difficile in an epidemic and a non-epidemic setting. Eur J Clin Microbiol Infect Dis. 2015;34(12):2325–30.

    PubMed  PubMed Central  Google Scholar 

  50. Litvin M, Reske KA, Mayfield J, McMullen K, Georgantopoulos P, Copper S, et al. Identification of a pseudo-outbreak of Clostridium difficile infection (CDI) and the effect of repeated testing, sensitivity, and specificity on perceived prevalence of CDI. Infect Control Hosp Epidemiol. 2009;30(12):1166–71.

    PubMed  PubMed Central  Google Scholar 

  51. Mohan SS, et al. Lack of value of repeat stool testing for Clostridium difficile toxin. Am J Med. 2006;119(4):356 e7–8.

    Google Scholar 

  52. Mostafa ME, Flynn T, Hartley CP, Ledeboer NA, Buchan BW. Effective utilization of C. difficile PCR and identification of clinicopathologic factors associated with conversion to a positive result in symptomatic patients. Diagn Microbiol Infect Dis. 2018;90(4):307–10.

    PubMed  Google Scholar 

  53. Green DA, et al. Clinical characteristics of patients who test positive for Clostridium difficile by repeat PCR. J Clin Microbiol. 2014;52(11):3853–5.

    PubMed  PubMed Central  Google Scholar 

  54. Luo RF, Banaei N. Is repeat PCR needed for diagnosis of Clostridium difficile infection? J Clin Microbiol. 2010;48(10):3738–41.

    PubMed  PubMed Central  Google Scholar 

  55. Nistico JA, Hage JE, Schoch PE, Cunha BA. Unnecessary repeat Clostridium difficile PCR testing in hospitalized adults with C. difficile-negative diarrhea. Eur J Clin Microbiol Infect Dis. 2013;32(1):97–9.

    CAS  PubMed  Google Scholar 

  56. Jackups R Jr. The promise-and pitfalls-of computerized provider alerts for Laboratory test ordering. Clin Chem. 2016;62(6):791–2.

    CAS  PubMed  Google Scholar 

  57. Truong CY, et al. Real-time electronic tracking of diarrheal episodes and laxative therapy enables verification of Clostridium difficile clinical testing criteria and reduction of Clostridium difficile infection rates. J Clin Microbiol. 2017;55(5):1276–84.

    PubMed  PubMed Central  Google Scholar 

  58. Tewell CE, et al. Reducing inappropriate testing for the evaluation of diarrhea among hospitalized patients. Am J Med. 2018;131(2):193–199.e1.

    PubMed  Google Scholar 

  59. White DR, Hamilton KW, Pegues DA, Hanish A, Umscheid CA. The impact of a computerized clinical decision support tool on inappropriate Clostridium difficile testing. Infect Control Hosp Epidemiol. 2017;38(10):1204–8.

    PubMed  Google Scholar 

  60. Quan KA, Yim J, Merrill D, Khusbu U, Madey K, Dickey L, et al. Reductions in Clostridium difficile infection (CDI) rates using real-time automated clinical criteria verification to enforce appropriate testing. Infect Control Hosp Epidemiol. 2018;39(5):625–7.

    PubMed  PubMed Central  Google Scholar 

  61. Madden GR, Cox HL, Poulter MD, Lyman JA, Enfield KB, Sifri CD. Cost analysis of computerized clinical decision support and trainee financial incentive for Clostridioides difficile testing. Infect Control Hosp Epidemiol. 2019;40(2):242–4.

    PubMed  Google Scholar 

  62. Mizusawa M, et al. Prescriber behavior in Clostridioides difficile testing: a 3-hospital diagnostic stewardship intervention. Clin Infect Dis. 2019;69(11):2019-2021.

    PubMed  Google Scholar 

  63. Madden GR, German Mesner I, Cox HL, Mathers AJ, Lyman JA, Sifri CD, et al. Reduced Clostridium difficile tests and Laboratory-identified events with a computerized clinical decision support tool and financial incentive. Infect Control Hosp Epidemiol. 2018;39(6):737–40.

    PubMed  PubMed Central  Google Scholar 

  64. Friedland AE, Brown S, Glick DR, Lusby MC, Lemkin D, Leekha S. Use of computerized clinical decision support for diagnostic stewardship in Clostridioides difficile testing: an academic hospital quasi-experimental study. J Gen Intern Med. 2019;34(1):31–2.

    PubMed  Google Scholar 

  65. Sperling K, Priddy A, Suntharam N, Feuerhake T. Optimizing testing for Clostridium difficile infection: a quality improvement project. Am J Infect Control. 2019;47(3):340–2.

    PubMed  Google Scholar 

  66. Revolinski S. Implementation of a clinical decision support alert for the management of Clostridium difficile infection. Antibiotics (Basel). 2015;4(4):667–74.

    CAS  Google Scholar 

  67. Bilinskaya A, Goodlet KJ, Nailor MD. Evaluation of a best practice alert to reduce unnecessary Clostridium difficile testing following receipt of a laxative. Diagn Microbiol Infect Dis. 2018;92(1):50–5.

    PubMed  Google Scholar 

  68. Zenziper Straichman Y, et al. Prescriber response to computerized drug alerts for electronic prescriptions among hospitalized patients. Int J Med Inform. 2017;107:70–5.

    PubMed  Google Scholar 

  69. Cho I, Slight SP, Nanji KC, Seger DL, Maniam N, Fiskio JM, et al. The effect of provider characteristics on the responses to medication-related decision support alerts. Int J Med Inform. 2015;84(9):630–9.

    PubMed  Google Scholar 

  70. Otto CC, Shuptar SL, Milord P, Essick CJ, Nevrekar R, Granovsky SL, et al. Reducing unnecessary and duplicate ordering for ovum and parasite examinations and Clostridium difficile PCR in Immunocompromised patients by using an alert at the time of request in the order management system. J Clin Microbiol. 2015;53(8):2745–8.

    PubMed  PubMed Central  Google Scholar 

  71. Sopena N, et al. Impact of a training program on the surveillance of Clostridioides difficile infection. Epidemiol Infect. 2019;147:e231.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kavazovic, A., et al. Clostridioides difficile nurse driven protocol: A cautionary tale. Am J Infect Control. 2019;48(1):108-111.

    PubMed  Google Scholar 

  73. Fabre V, et al. Impact of case-specific education and face-to-face feedback to prescribers and nurses in the management of hospitalized patients with a positive Clostridium difficile test. Open Forum Infect Dis. 2018;5(10):226.

    Google Scholar 

  74. Schultz K, et al. Preventable patient harm: a multidisciplinary, bundled approach to reducing Clostridium difficile infections while using a glutamate dehydrogenase/toxin immunochromatographic assay/nucleic acid amplification test diagnostic algorithm. J Clin Microbiol. 2018;56:9.

    Google Scholar 

  75. Lin MY, Tiffany Wiksten RN, Tomich A, Hayden MK, Segreti J. Impact of mandatory infectious disease (ID) specialist approval on hospital-onset Clostridium difficile (HO-CDI) testing and infection rates: results of a pilot study. Open Forum Infect Dis. 2018; 5(Suppl 1):S38-S39.

    PubMed Central  Google Scholar 

  76. Kamboj M, et al. Potential of real-time PCR threshold cycle (CT) to predict presence of free toxin and clinically relevant C. difficile infection (CDI) in patients with cancer. J Inf Secur. 2018;76(4):369–75.

    Google Scholar 

  77. Madden GR, Poulter MD, Sifri CD. PCR cycle threshold to assess a diagnostic stewardship intervention for C. difficile testing. J Inf Secur. 2019;78(2):158–69.

    Google Scholar 

  78. Origuen J, et al. Toxin B PCR amplification cycle threshold adds little to clinical variables for predicting outcomes in Clostridium difficile infection: a retrospective cohort study. J Clin Microbiol. 2019;57:2.

    Google Scholar 

  79. Sandlund J, Wilcox MH. Ultrasensitive detection of Clostridium difficile toxins reveals suboptimal accuracy of toxin gene cycle thresholds for toxin predictions. J Clin Microbiol. 2019;57:6.

    Google Scholar 

  80. Pollock NR, Banz A, Chen X, Williams D, Xu H, Cuddemi CA, et al. Comparison of Clostridioides difficile stool toxin concentrations in adults with symptomatic infection and asymptomatic carriage using an ultrasensitive quantitative immunoassay. Clin Infect Dis. 2019;68(1):78–86.

    CAS  PubMed  Google Scholar 

  81. Song L, Zhao M, Duffy DC, Hansen J, Shields K, Wungjiranirun M, et al. Development and validation of digital enzyme-linked immunosorbent assays for ultrasensitive detection and quantification of Clostridium difficile toxins in stool. J Clin Microbiol. 2015;53(10):3204–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sandlund J, et al. Ultrasensitive detection of clostridioides difficile toxins A and B by use of automated single-molecule counting technology. J Clin Microbiol. 2018;56:11.

    Google Scholar 

  83. Sandlund, J., et al., Increased clinical specificity with ultrasensitive detection of Clostridioides difficile toxins: reduction of overdiagnosis compared to nucleic acid amplification tests. J Clin Microbiol, 2019.

  84. Madden GR, Sifri CD. Reduced Clostridioides difficile tests among solid organ transplant recipients through a diagnostic stewardship bundled intervention. Ann Transplant. 2019;24:304–11.

    PubMed  PubMed Central  Google Scholar 

  85. Jakharia KK, Ilaiwy G, Moose SS, Waga M, Appalla L, McAlduff J, et al. Use of whole-genome sequencing to guide a Clostridioides difficile diagnostic stewardship program. Infect Control Hosp Epidemiol. 2019;40(7):804–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennie H. Kwon.

Ethics declarations

Conflict of Interest

J.H.K. is supported by the National Institute of Allergy And Infectious Diseases, National Institutes of Health (award 1K23AI137321). All other authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Healthcare Associated Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boly, F.J., Reske, K.A. & Kwon, J.H. The Role of Diagnostic Stewardship in Clostridioides difficile Testing: Challenges and Opportunities. Curr Infect Dis Rep 22, 7 (2020). https://doi.org/10.1007/s11908-020-0715-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-020-0715-4

Keywords

Navigation